山地災害における
 治山施設及び森林の効果について

8. 土石流発生時の治山施設効果

8. 1	二次元氾濫シミュレーションによる土石流の再現	•	•	•	•	•	8
8. 2	土石流発生時における治山施設の耐久性	•	•	•	•	•	8
8. 2	土石流発生時における治山施設の効果	•	•	•	•	•	8

<u>9. 荒廃地における森林</u>

9. 1	荒廃地及び周辺の林相	•	•	•	•	•	9
9. 2	荒廃地における樹木の根系分布	•	•	•	•	•	9
9.3	樹木による土石流等の抑止事例		•	•	•		9

資料3

- 8-1-1
- 8-2-1
- 8-3-1

- 9–1–1
- 9–2–1
- 9-3-1

8. 土石流発生時の治山施設効果

8.1 二次元氾濫シミュレーションによる土石流の再現

(1)解析条件の設定

計算範囲の設定

計算は HyperKANAKO を用いた。検討の設定は、堰堤上流から堆砂敷きの上流までを1 次元解析とし、扇状地から下流を2次元解析とした。設定の概況は下図の通りである。

検討に用いた地形データは平成 21 年度作成の LP データ(国土交通省太田河川事務所提供) である。これを HyperKANAKO 上で 5m×5m に変換して用いた。

② 粗度係数

粗度係数は以下の値を適用した。

表 8.1.1 粗度係数

適用条件	粗度係数
土石流流下時	0.1
土砂の運搬形態が掃流に変化した場合	0.03

③土石流諸元

土石流のピーク流量、総土石流量の算出に当たっては、LP データの差分解析によって流 域内および扇状地からの流出土砂量が求められているため、経験式によることとした。

土石流は降雨のピーク時に発生したとし、ハイドログラフはピークを先頭に200秒間の三 角形、後続にピーク雨量から求められる流量を継続させることとした。検討に用いた雨量観 測所は近傍の三入観測所、高瀬観測所である。

表 8.1.2 高松山地区に用いた降雨データと洪水流量(三入観測所)

Dav	time	雨量	累加雨量	合理式による	o流量(m3/s)
Day	ume	(mm)	(mm)	ケ-2(0.102km2)	ケ-3(0.059km2)
8月19日	17:00	0.5	0	0.01	0.01
	18:00	0.0	0.0	0.00	0.00
	19:00	0.5	0.5	0.01	0.01
	20:00	1.5	2.0	0.03	0.02
	21:00	15.0	17.0	0.34	0.20
	22:00	3.5	20.5	0.08	0.05
	23:00	8.0	28.5	0.18	0.10
	0:00	4.0	32.5	0.09	0.05
8月20日	1:00	2.0	34.5	0.05	0.03
	2:00	28.0	62.5	0.64	0.37
	3:00	80.0	142.5	1.82	1.05
	4:00	101.0	243.5	2.30	1.32
	5:00	12.5	256.0	0.28	0.16

土石流の濃度は計算開始点の勾配から算出されたものを基本とし、再現計算の結果が良好となるよう トライアンドエラーで変化させることとした。この際に、流出土砂量は変化させずに、土砂濃度に応 じて総土石流量、ピーク流量も変化させた。

表 8.1.4 土石流量の算出(高松山ケー2)

-		
	初期条件	検討値
投入土砂量(m3)	11,800	11,800
流路勾配(tan θ)	0.213	0.213
土砂濃度	0.375	0.2
総土石流量(m3)	18,889	35,400
ピーク流量(Qspm3/s)	188.9	354.0

表 8.1.5 土石流量の算出(高松山ケ-3)

	初期条件	検討値			
投入土砂量(m3)	16,000	16,000			
流路勾配(tan θ)	0.525	0.525			
土砂濃度	0.54	0.54			
総土石流量(m3)	17,778	17,778			
ピーク流量(Qspm3/s)	177.8	177.8			
*ケ-3は初期条件で良好な結果となった					

表 8.1.3 美濃越地区に用いた降雨データと洪水流量(高瀬観測所 流域面積 0.293km²)

Day	time	雨量(mm)	累加雨量	合理式による流量 (m3/s)
8月19日	18:00	0.0	0	0.00
	19:00	2.0	2.0	0.13
	20:00	7.0	9.0	0.46
	21:00	19.0	28.0	1.24
	22:00	12.0	40.0	0.78
	23:00	18.0	58.0	1.17
8月20日	0:00	0.0	58.0	0.00
	1:00	2.0	60.0	0.13
	2:00	21.0	81.0	1.37
	3:00	87.0	168.0	5.66
	4:00	79.0	247.0	5.14

表 8.1.6 土石流量の算出(美濃越)					
	初期条件	検討値		350	
投入土砂量(m3)	22,800	22,800		300	-
流路勾配(tan θ)	0.422	0.422		250	
土砂濃度	0.54	0.3		200	
総土石流量(m3)	25,333	45,600		150	
ピーク流量(Qspm3/s)	253.3	456.0		100	
				50	

図 8.1.7 検討結果の土石流ハイドログラフ(美濃越)

高松山ケ-2 投入ハイドログラフ

図 8.1.5 検討結果の土石流ハイドログラフ(高松山ヶ-2)

高松山ケ-3 投入ハイドログラフ

図 8.1.6 検討結果の土石流ハイドログラフ(高松山ケー3)

美濃越 投入ハイドログラフ

(2)二次元氾濫シミュレーション結果 設定した条件に基づいた解析結果は以下の通りである。

①高松山(ケー2)

図 8.1.8 堆積形状(600 秒後)(縦領域)

図 8.1.10 堆積形状(600 秒後)(横領域)

図 8.1.9 堆積形状(1800 秒後)(縦領域)

図 8.1.11 堆積形状(1800 秒後)(横領域)

②高松山(ケー3)

図 8.1.12 堆積形状(20分後 200秒から変化見られない)

③美濃越

図 8.1.13 堆積形状(100 秒後)

図 8.1.14 堆積形状(300 秒後)

8.2 土石流発生時における治山施設の耐久性

(1)高松山(ケー2)

①施設状況

写真 8.2.3 上流堆砂状況

②二次元氾濫シミュレーションより算出される土石流諸元 二次元氾濫シミュレーションより算出される、治山施設位置における土石流諸元は以下の とおり。

図 8.2.2 氾濫シミュレーション結果

写真 8.2.1 治山施設正面(S40 施工) (大きな変状は確認されない)

写真8.2.2 下流つま先の小規模な洗掘

表 8.2.1	土石流諸元
---------	-------

項目	諸元値
土石流水深	0.823m
土石流流速	12.291m/s
土石流濃度	0.2
土石流単位体積重量	14.52 kN/m 3

③
 土石流時の谷止工安定度評価

土石流時の安定度評価として、以下の条件にて安定計算を行った。

また、土石流が堤体に作用した場合の安定計算結果は以下の通りである。

図 8.2.4 計算モデル図(流体力天端作用)

ଅ≜ o'∦ 1:0.0 50 . م

石流が放水路を越流するモデルとして安定	E計算を行う。安定計算結果は以下のとおり。
<u>< 1.50</u> >	
0.83	
	表 8.2.2 安定計算結果(土石流越流)

上図に示すとおり、土石流発生時には堤体背面は満砂状態であったといえることから、土

検討項目 安定計算結果 判定 $0 \le d \le B$ OK 転倒 0 < 1.249 m < 3.15 m滑動 $F_s = 1.96 > 1.00$ OK OK 地盤支持 $Pmax = 160.57 \text{kN}/\text{m}^2 < 1.050 \text{kN}/\text{m}^2$ d:つま先から合力作用位置までの距離 B:堤体幅 Fs:滑動安全率 Pmax:堤底発生応力(最大)

図 8.2.3 計算モデル図

3, 15

安定計算の結果、いずれの安定条件も満足し、安定が保たれることが確認された。

8-2-2

表 8.2.3 安定計算結果(天端に作用)

	安定計算結果	判定
	0 < d < B	NC
	0 > -1.821 m < 3.15 m	MU
	Fs=0.75<1.00	NG
寺	$Pmax = 697.33 \text{kN/m}^2 < 1,050 \text{kN/m}^2$	OK

d:つま先から合力作用位置までの距離

B:堤体幅

Fs:滑動安全率

Pmax: 堤底発生応力(最大)

上計算結果より、堤体に土石流が作用する場合、安定が確保されないことが確認された。

(2)美濃越

①施設状況

第1号谷止工の損傷状況を把握するため、「亀裂損傷分布調査」、「強度推定調査(シュミットハンマー計測)」を行った。図8.2.6に破損状況及び強度推定調査結果を示した。

8-2-3

S=1:250 10 5

20 (m)

第1号谷止工上部の流失したコンクリート片の状況を以下に示す。

写真① 流失コンクリート片(1.2m×4.8m×1.4m)(写真撮影日2014年10月8日)

写真③ 流失コンクリート片(1.2m×4.0m×1.0m) (写真撮影日 2014 年 10 月 8 日)

写真② 流失コンクリート片(1.0m×4.8m×1.2m)(写真撮影日2014年10月8日)

写真④ 流失コンクリート片(1.2m×4.0m×1.0m) (写真撮影日 2014 年 10 月 8 日)

②二次元氾濫シミュレーションより算出される土石流諸元

二次元氾濫シミュレーションより算出される、治山施設位置における土石流諸元は以下のとおり。

縦断図に示すとおり、土石流発生時には堤体背面は 4.2m 未満砂状態であったことから、土 石流流体力が堤体背面に作用するモデルとして安定計算を行う。安定計算結果は以下のとお り。

表 8.2.5	土石流諸元
---------	-------

項目	諸元値	
土石流水深	1.469m	
土石流流速	16.103m/s	
土石流濃度	0.3	
土石流単位体積重量	$15.89 kN/m^{3}$	

<u>土石流流体力</u> F=617.64kN/m 000 1.30 (検討項目 転倒 滑動 地盤支持

図 8.2.9 計算モデル図

上計算結果より、堤体に土石流が作用することから、安定が確保されないことが確認された。

③土石流時の谷止工安定度評価

土石流時の安定度評価として、以下の条件にて安定計算を行った。

表 8.2.6 安定計算結果

安定計算結果	判定	
0 < d < B 0 > -4, 254m < 5, 30m	NG	
$F_s = 0.67 < 1.00$	NG	
$Pmax = 1126 kN/m^2 > 1,050 kN/m^2$	NG	
d:つま先から合力作用位置までの距離		

B:堤体幅

Fs:滑動安全率

Pmax:堤底発生応力(最大)

図 8.3.4 谷止工なし(堆積 80 秒後)

図 8.3.5 谷止エなし(堆積 100 秒後)

図 8.3.6 谷止工なし(堆積 200 秒後)

高松山(横領域)堆積

図 8.3.11 谷止エなし(堆積 100 秒後)

図 8.3.12 谷止エなし(堆積 200 秒後)

高松山(縦領域)最大水位

図 8.3.13 谷止工あり(水位 80 秒後)

図 8.3.14 谷止工あり(水位 100 秒後)

図 8.3.15 谷止工あり(水位 200 秒後)

図 8.3.16 谷止工なし(水位 80 秒後)

図 8.3.17 谷止工なし(水位 100 秒後)

図 8.3.18 谷止工なし(水位 200 秒後)

図 8.3.19 谷止工あり(水位 100 秒後)

図 8.3.20 谷止工あり(水位 300 秒後)

図 8.3.21 谷止工あり(水位 30 分後)

図 8.3.23 谷止工なし(水位 300 秒後)

図 8.3.24 谷止工なし(水位 30 分後)

図 8.3.31 谷止工あり(水位 80 秒後)

図 8.3.32 谷止工あり(水位 100 秒後)

____/

図 8.3.33 谷止工あり(水位 200 秒後)

図 8.3.36 谷止工なし(水位 200 秒後)