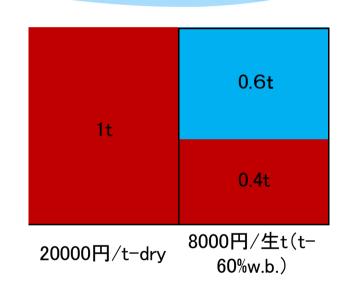
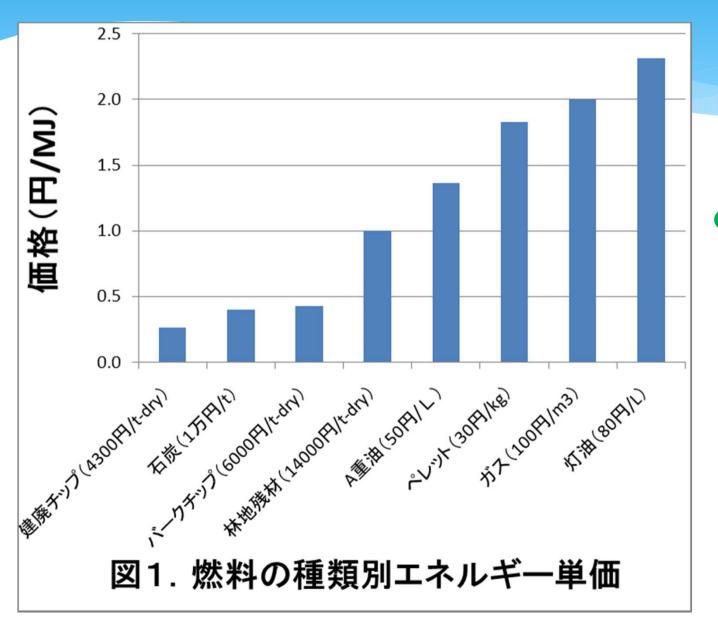
2014/1/24 森林・木材産業シンポジュウム

木質バイオマス発電の動向と課題

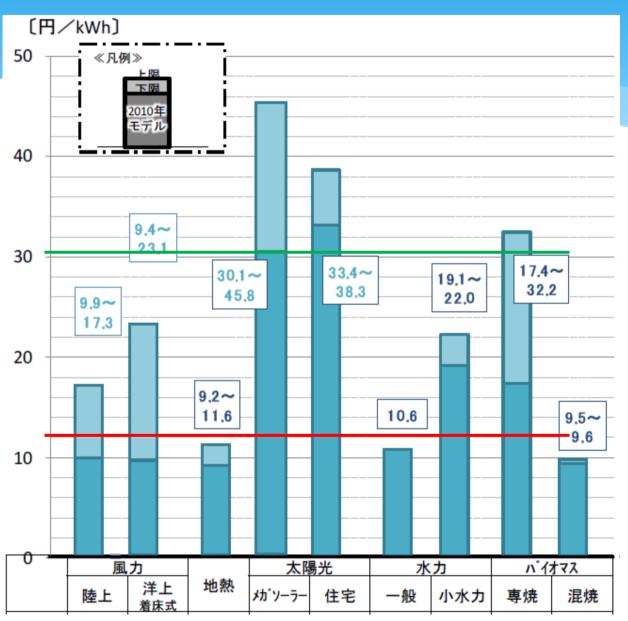

久保山裕史(森林総合研究所)

内容

- 1. 固定価格買い取り制度の可能性について
- 2. 木質バイオマス流通の現状
- 3. 今後の課題
- 4. まとめ

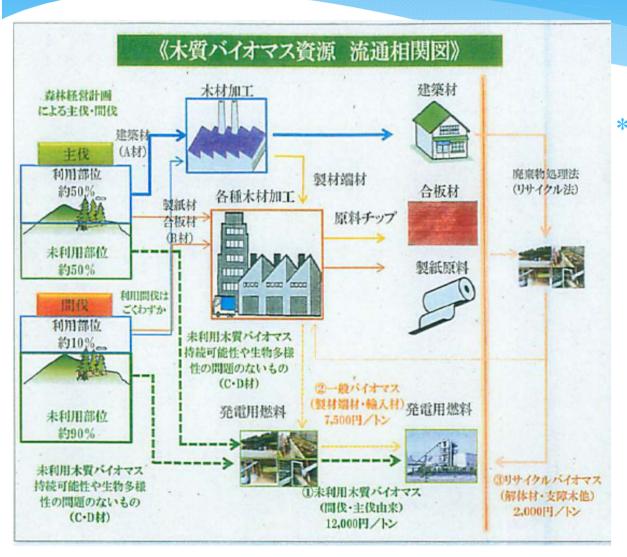

推計の前提

- * 対象樹種:スギ
- * 容積密度:0.35t-dry/m³ (全国木材チップ工業連合会(2013)木材チップ等原料転換型 事業広葉樹チップ調査・分析報告書)
- * 幹部重量:0.35t-dry/皮うちm³
 - +皮≒0.39t-dry/皮うちm³
 - +伐採直後の水分60%:地域、季節
 - →約1トン/皮うちm³
- * 燃料用チップ:皮付きチップ(黒チップ)
- * 1生t(水分60%)≒0.4t-dry→8000円/生t≒2万円/t-dry (ヒノキの容積密度は0.42t-dry/m³、水分50%→1トン弱)


1. 固定価格買い取り制度の可能性について

1-1. 木質バイオマスエネルギーの競争力

熱利用に関しては、石油との では、石油との 競争は十分可能


1-2. 木質バイオマス発電の低い競争力

- * 発電効率が低い
 - * 20%程度@5000kW
 - →熱電併給(CHP)80%前後
 - * 電気32円/kWh
 - v.s 熱8円/熱kWh
- * 高い設備コスト
 - * 専焼:40万円/kW
 - * ガス化:75~150万円/kW
 - ⇔熱供給:6万円/熱kW
- * 燃料が高い
 - * 16000円/t-dry以上

出典:内閣官房国家戦略室(2012)調達価格等算定委員会(第1回)-配付資料

1-3. 買取価格の設定根拠

- (株)グリーンサーマル
 - * 未利用木質バイオマス
 - 12000円/t-40%w.b.
 - ≒20円/kg-dry
 - →31.8円/kWh
 - * 買取期間20年、IRR8%

1-4. 規模と経済性

	G社			T社			F社		
発電効率(%)	26			23			28		
発電規模(kW)	5700			4900			12000		
チップ買取価格 (円/kg-40%w.b.)	10	12	14	10	12	14	10	12	14
送電端効率(%)	22			19			24		
発電コスト(円 /kWh)	24.1	27.5	30.9	26.3	30.1	33.9	21.9	25.1	28.2
IRR(%)@20年	14.3%	8.0%	赤字	11.5%	3.2%	赤字	19.9%	14.0%	7.5%

- * 5000kW規模の場合、未利用バイオマス12円/kg-40%≒20円/kg-dry ≒丸太6000円/m³(6000円/生t)前後@チップ工場
- * 1万kW以上だと14円/kg-40%≒23円/kg-dry →より大量の燃料集荷=燃料価格の上昇

例)1万kW規模で未利用バイオマスを 50%利用した場合

	F社					
発電効率(%)	28					
発電規模(kW)	12000					
未利用バイオマス (円/kg-40%w.b.)	12	13.8	15.6			
一般バイオマス (円/kg-40%w.b.)	8.4	9.66	10.92			
発電コスト(円 /kWh)	22.2	24.6	27.0			
IRR(%)@20年	11.7%	6.5%	0.0%			

* 未利用バイオマス:13.8 円/kg-40%

≒23円/kg-dry

≒7000円/m³ (7000円/生t)前後@ チップ工場

1-5. 熱電併給(CHP)の場合

	T社			T社熱電併給(CHP) A重油60円/L代替			// A重油70円/L代替		
発電効率(%)	23			10.5			10.5		
発電規模(kW)	4900			2287			2287		
チップ買取価格 (円/kg-40%w.b.)	10	12	14	10	12	14	10	12	14
総合効率(%)	19			75			75		
発電コスト(円 /kWh)	26.3	30.1	33.9	15.3	26.0	36.8	5.6	16.4	27.1
IRR(%)@20年	11.5%	3.2%	赤字	12.2%	3.9%	赤字	18.5%	11.4%	2.9%

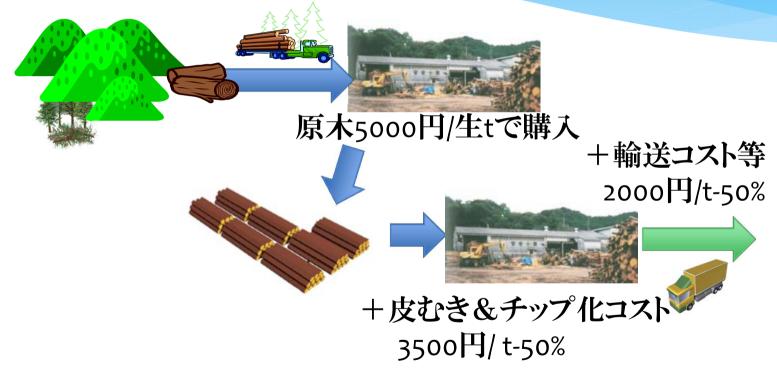
- * 原油(ガス)価格によってはCHP大幅に有利
- * 未利用バイオマス14円/kg-40%
- * 買取期間終了後の発電コストに大きな違い

1-6. 丸太生産量に対して過大な燃料需要

新設木質バイオマス発電所の未利用材需要(燃料の6割)

<u> </u>	/イオマス発	電所の木型	<u> 用材需要(</u>	燃料の6割)				
都道府県	出力合計 (kW)	未利材需 要(万m3)	H23年の 素材生産 量(万m3)	必要燃料 /素材生 産	都道府県	出力合計 (kW)	未利材需 要(万m3)	H23年の 素材生産 量(万m3)	必要燃料 /素材生 産
北海道	103,250	100	344	0.3	愛知県	1,000	1	14	0.1
青森県	9,250	9	68	0.1	三重県	51,000	49	27	1.8
岩手県	26,550	26	98	0.3	滋賀県	3,550	3	7	0.5
宮城県	10,800	10	38	0.3	兵庫県	21,530	21	27	0.8
秋田県	50,200	49	99	0.5	奈良県	6,500	6	16	0.4
山形県	52,500	51	29	1.7	和歌山県	2,000	2	16	0.1
福島県	25,500	25	64	0.4	鳥取県	11,400	11	15	0.8
茨城県	5,800	6	29	0.2	島根県	18,950	18	31	0.6
栃木県	2,000	2	47	0.0	岡山県	10,000	10	35	0.3
群馬県	10,000	10	20	0.5	広島県	18,500	18	27	0.7
新潟県	3,200	3	12	0.3	高知県	12,750	12	51	0.2
富山県	5,700	6	6	0.9	福岡県	15,000	15	14	1.1
石川県	3,000	3	14	0.2	佐賀県	8,300	8	14	0.6
山梨県	11,500	11	16	0.7	熊本県	20,800	20	89	0.2
長野県	34,500	33	33	1.0	大分県	55,700	54	87	0.6
岐阜県	8,250	8	33	0.2	宮崎県	53,750	52	163	0.3
静岡県	72,000	70	28	2.5	鹿児島県	36,350	35	62	0.6
※国産材を使	わないと見られ	いる大型施設は	除いた。		合計	781,080	756	1,645	0.5

- 素材生産量5割増し
- C・D材需要は倍増以 上(760万m³拡大)
- ▶ 供給コストの削減
- > A·B材需要の拡大
- > 追加の労働力


2. 木質バイオマス流通の現状と課題

2-1. 製紙用チップ流通の現状

- * 丸太:4000円/m³前後@チップ工場 <未利用バイオマス(5千kW規模)4500円/m³@チップ工場 皮をむく場合
- * 今後、製紙利用とは大きく競合

2-2. 未利用バイオマス供給 (1)事例1:5000kW規模

≒10500 t-50% ≒8400円/生t程度


- * チップ工場着未利用丸太:5000円/生t(円/m³)
- * 5000t/月のうち4000tを自社供給←40km圏内

燃料用丸太土場の様子


- * 7ha、2万t=4000t/月×5ケ月で回転
- * ほぼ2m材、5ヶ月程度乾燥→チップ工場

(2)事例2:1万kW規模

A・B材からは 製材•集成材

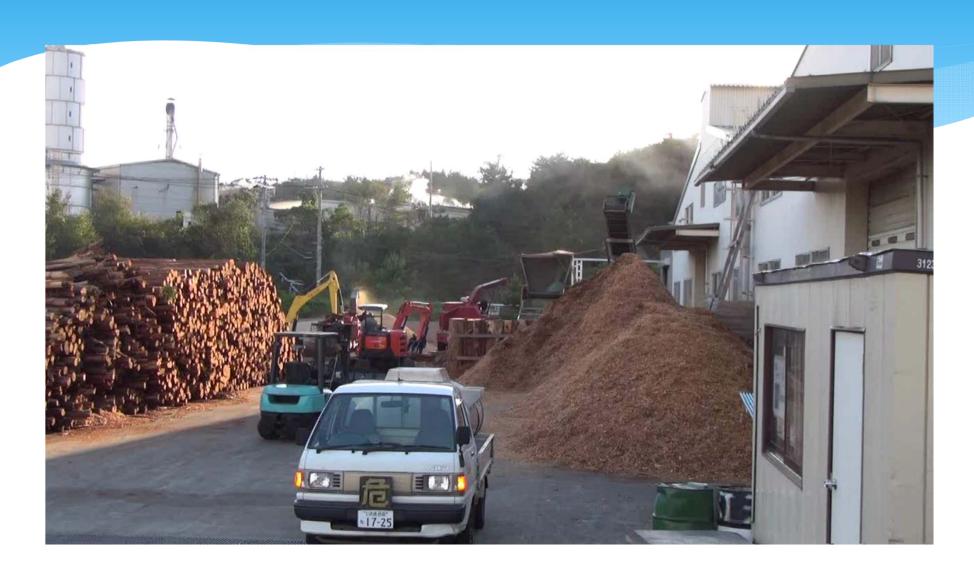
1000円/生t

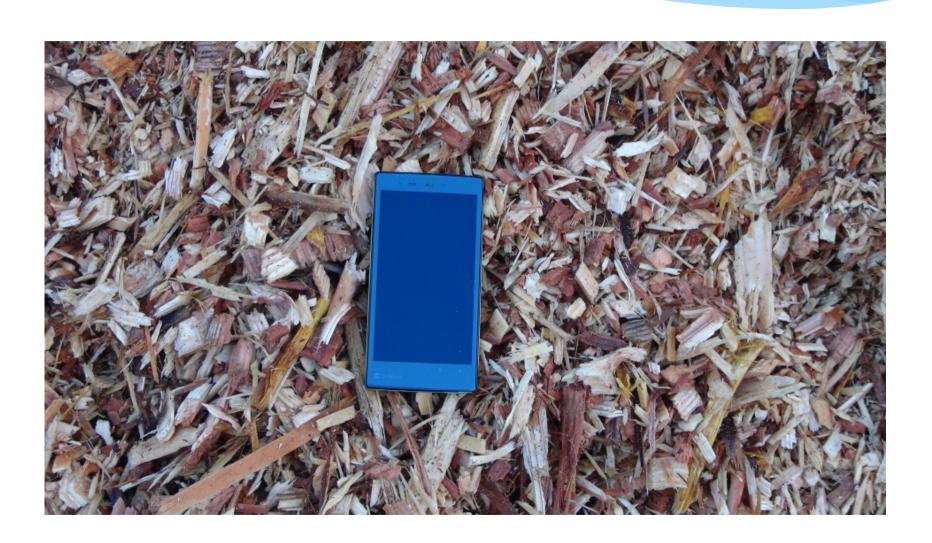
- ・タンコロや細丸太
- ・フォワーダ(箱をつける)
- ・アームロール24m3
- ·40km圏内

・皮付きチップ

・5生t/h@モバーク

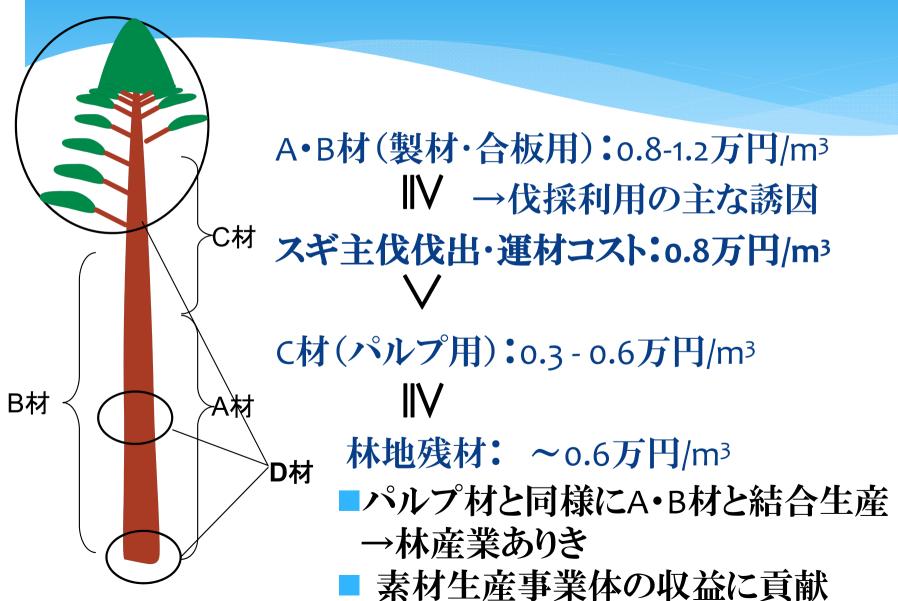
・スクリーン無し

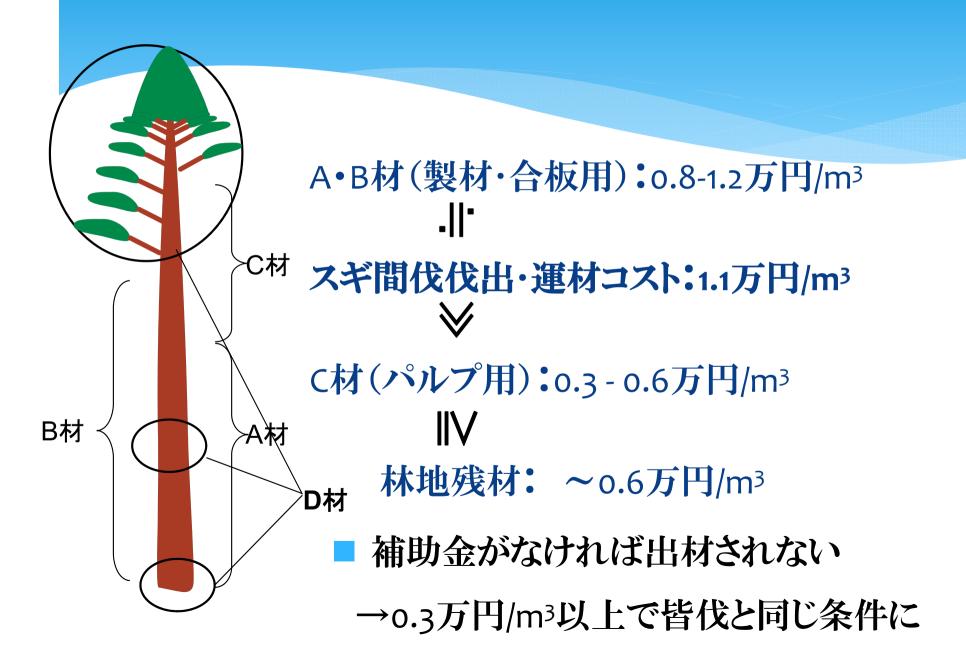

→長尺チップ→スクリーン



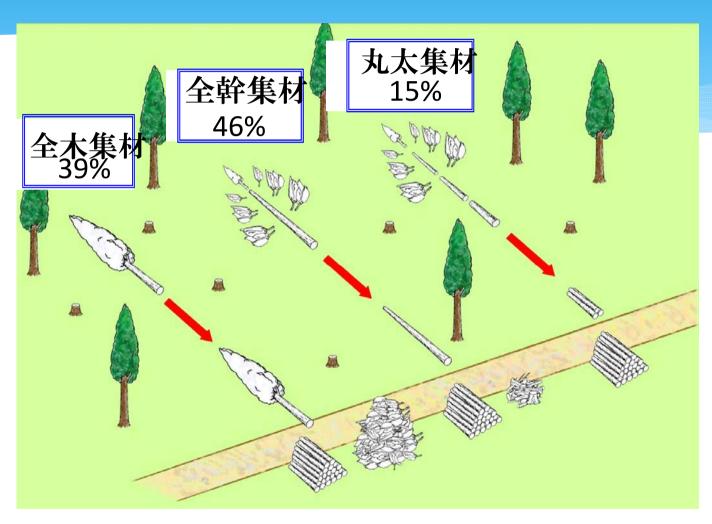
≒供給コスト 8000円/生t

- * コストぎりぎり→工場着5000円/生t程度→山土場3000円/生t程度
- * プラントまでの距離35km


燃料生産の様子



3. 今後の課題


3-1. 林業と連携したバイオマス供給 (1)皆伐の場合

(2)間伐の場合

3-2. 全木集材による林地残材供給

- ■全木集材がバイオマス供給には最適
- ■造材歩留まり80%=端材20%+枝葉23%
 - →供給量を増やすには枝や梢端を活用

3-3. 輸送コストの削減:チップ化して輸送

- * 林地残材をそのまま輸送
- →o.7t
- →4t@25m³トラック

- > 粉砕して輸送
 - $\rightarrow 8t@25m^3$

0% 35-

High cost/ton*kmHigh terminal costs

ca 40 %

60-70 %

3-4. チップの低コスト生産

- * 道路走行 ⇔トレーラー搬送が必要
- * 刃物で切削 ⇔ ハンマーでつぶす
- * 大出力360Hp ⇔ 120Hp →高効率:100t/日以上⇔20t/日

3-5. 欧州型への転換 (1)直送

5000~5500円/生t@山土場

≒ 5000~5500円/m³

輸送コスト

=1000~1500円/生t

買い取り価格 20000円/t-dry ≒8000円/生t

チップ化コスト ≒1000~1500円/生t

- * 伐出コストを5000円/m³程度に抑えられれば立木販売収入増
- * 高水分燃料に対応したボイラーを選択
- * 山土場での簡易乾燥:60%→50%

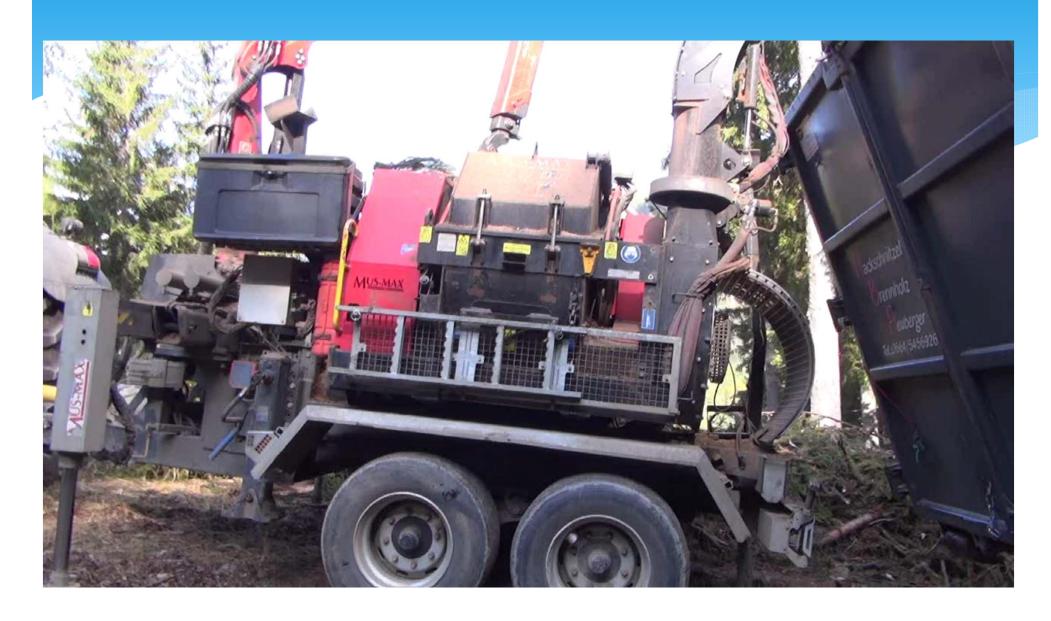
(2)高付加価値化 レオベンバイオマス流通センターの事例

- 林業協同組合WVの下で約300人の森林所有者が設立
- ●シュタイヤーマルク州では8カ所
- 目的は安いパルプ材以外の需要開拓
 - 半乾燥チップ:中型チップボイラー(3000~4000kW)向け
 - 生チップ:大型チップボイラー向け(8000kW~)

価値の高い半乾燥チップの供給

- * 年間約1万m3販売(在庫 8500m3)
 - * 丸太:5000円/m³
- * 1年以上保管:水分30%以下
- * 大型チッパートラックで切削
 - * コンプテック社約7千万円、 700馬力、処理量丸太換算 80m³/時間→1600円/t-dry
- * 大型コンテナートラック (90m³)で運搬
- * 1.6万円/t-dry程度で販売

センターにおけるチップ化



☆生チップ供給の場合

- * 林地残材8000m3も販売
- * 山土場においてチッパートラクターでチップ化
 - * 約5千万円
 - * 360馬力:32m³/時間
 - * 枝葉主体の現場で35m³コンテナー (丸太14m³相当)は33分でいっぱいに
- * 1.1万円/t-dry程度で販売

山土場におけるチップ化

4. まとめ

- 1. 木質バイオマス発電の低い経済性
 - * 大規模は有利⇔燃料単価は上昇
 - * 熱電併給によって経済性向上
- 2. 燃料チップ価格は上昇する可能性大
 - * 4000円/m³→6000円/m³@チップ工場
 - * 低コスト供給必須:林業連携、全木集材、山土場チップ化 →5000円/m³@山土場
- 3. 国産材の競争力向上による林業活性化が重要
 - * 加工・流通費・伐出・再造林コストの削減