第 モデル地区における森林施業の考え方

第3章 モデル地区における森林施業の考え方

1.誘導すべき森林タイプの抽出(石塚森吉)

(1) 森林の構造とオオタカおよびオオタカの餌としての鳥類群集の関係

1) オオタカの狩場

本モデル地区のオオタカ成鳥雄の繁殖期の狩場としては、まず落葉広葉樹林が選好され、次に40年生以上の人工林も比較的よく利用されていた。そのため、本書「第2章3.繁殖期の行動圏と狩場環境からみた配慮事項」では、巣から半径2~3km以内の森林について、人工林内への広葉樹林の導入、沢や尾根沿いの広葉樹林の維持・拡大、人工林の長伐期化が望ましいとしている。一方、北海道の調査例によると、オオタカが狩りをしていた森林は、林齢40~50年生の人工林で立木密度が1000本/ha程度、樹冠が閉鎖し林床植物が少ない単層林で、オオタカが樹木に隠れながら飛行して獲物に接近し、奇襲するのに適した広さの空間が林内にあるような林相としている(工藤2005⁸³、Kudo et al., 2005⁸⁴)。このことから、40年生以上の針葉樹人工林と広葉樹林がオオタカの好む狩場であると考えられる。

2) オオタカの営巣林

本書「第2章4.オオタカの架巣環境解析」ではオオタカの営巣林特性として、林齢が高く (樹高・胸高直径が大きく、立木密度が低い)、林内空間が広いこと(亜高木層が無い)が挙げられている。一方、北海道においても、営巣林の林齢は40年生以上で、立木密度は500~1,000本/haで狩り場となる人工林より立木密度が低いことが報告されている(工藤2005⁸³)。

3) オオタカの餌となる鳥類群集と森林構造

本書「第2章1.オオタカの餌となる鳥類の生息量と森林施業による効果」では、モデル地区のように林分配置がモザイク状で成長途上の林分が多い森林景観のもとで、オオタカの好適餌種である鳥類が多く生息できるようにするためには・、

- a . 1~5ha程度の広葉樹林を適度に(12%以上)交える
- b . 各種齢級の人工林をモザイク状に配置する
- c. 壮齢以上の人工林に広葉樹を導入し階層構造を発達させる
- d. 林縁での出入りのため幅50m程度の伐採地、新植地を帯状に混在させる

- ことが必要であるとしている。

(2) 誘導すべき森林の構造とそのための施業技術

人工林の卓越したモデル地区におけるオオタカの狩場、営巣林、オオタカの餌となる鳥類の生息に適した森林の構造を整理し、誘導すべき森林の構造とそのための森林施業・管理技術を抽出すると、「針葉樹人工林への広葉樹の導入」、「長伐期林への誘導」、「林分のモザイク配置の方法」に集約されると考えられる。そのため、以下の項目を立て、森林施業・管理指針を作成した。

⁸³ 工藤琢磨(2005)オオタカと森林施業.山林 1457:38-41

⁸⁴ Kudo, T., Ozaki, K., Takao, G., Sakai, T., Yonekawa, H., Ikeda, K.(2005)Landscape analysis of northern goshawk breeding home range in northern Japan. Journal of Wildlife Management 69:1229-1239

針葉樹人工林への広葉樹の導入

- i. 林分密度管理による広葉樹低木層の導入
- ii. 針広混交林への誘導 下刈り、除伐期における導入と閉鎖林への広葉樹パッチの導入
- iii. 広葉樹林化の方法

針葉樹長伐期林への誘導

- i. 長伐期林の機能、立地特性、リスク要因
- ii. 長伐期林の密度管理と更新

林分配置のデザイン

- i. 森林の機能類型にもとづいた国有林の管理経営指針
- ii. 林分配置の方法

2. 針葉樹人工林への広葉樹の導入(石塚 森吉)

- (1) 林分密度管理による広葉樹低木層の導入
 - 1) スギ単層林の密度管理と散光透過率

人工林の林床に鳥類の好む実をつける広葉樹や鳥類の餌となる昆虫が好む広葉樹低木層を発達させるには、前述(第2章5)のとおり、林内散光透過率を10~30%で維持する必要がある。ここでは、そのための密度管理の方法を考えるが、林内の光環境は立木密度だけでなく、樹高(枝下高)の影響も強く受ける。樹高成長は立地環境によって大きく異なることから、対象林分の樹高成長の傾向を「地位」として認識する必要がある。図72に、北関東地方のスギ林の地位別の標準樹高曲線を示すが、密度管理で扱う樹高は林分の平均樹高ではなく上層樹高(主林木の樹高)である。

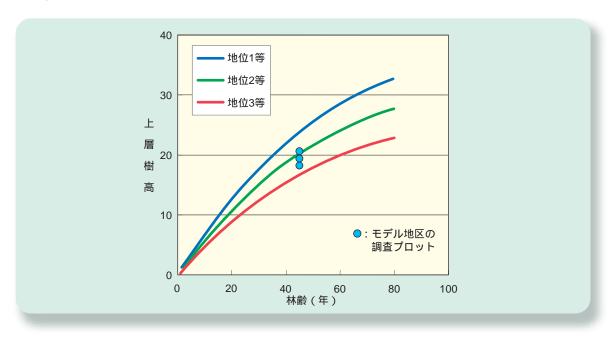
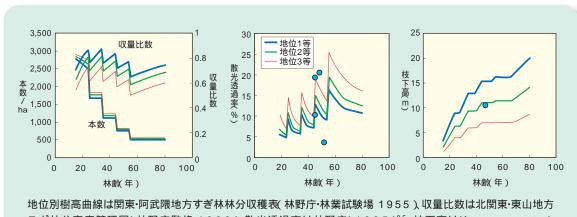



図 72 スギの地位別の上層樹高曲線 北関東・阿武隈地方すぎ林林分収穫表(1955)より

定性間伐(スギ)

「森林の管理経営の指針」(関東森林管理局2005⁹)では、目安として、25、35、45、55年生時に20~35%の間伐率で間伐を実行することとしている。本数間伐率33%の定性間伐の場合、地位2等地で10%以上の透過率が確保されるのは、3回目(45年)の間伐以降である(図73)。ただし、地位3等では、1回目の間伐から10%を超える明るさが期待でき、逆に、地位1等では樹高成長が旺盛で林冠の閉鎖が早く、4回目の間伐まで10%以上の明るさを維持することは難しい。しかし、地位1等地では枝下高の枯れ上がりが速いと予想され、2回目(35年生)の間伐以降から立木密度も1,200本/ha以下になるので、オオタカの狩場としての機能が期待できる。

地位別樹高曲線は関東・阿武隈地方すぎ林林分収穫表(林野庁・林業試験場 1955)、収量比数は北関東・東山地方スギ林分密度管理図(林野庁監修 1999)、散光透過率は林野庁(1995) % 5、枝下高はKanazawa et al. (1985) % のモデルのYoshinoのパラメータを用いて推定した。枝下高は高齢になるほど誤差が大きいと思われる。図中の青色の点は、モデル地区の調査林分の数値を示す。

図 73 スギの標準的な間伐コース(25、35、45、55年時に本数間伐率33%の定性間伐)における 地位別の収量比数、林内散光透過率、枝下高の経年変化のシミュレーション

スギ人工林の場合、散光透過率10~30%の明るさを維持するには、収量比数0.6前後で密度管理する必要があるが、3,000本植栽、定性間伐の場合について、地位別に間伐コースの1例を図74に示した。間伐実行の林齢は上記の関東森林管理局の目安と一致させたが、地位1等、2等の林分については、1回目の間伐(本数で33~40%)を15年生頃より行なう必要がある。1回目の間伐を25年生時とすると、収量比数0.6に落とすには50%以上の強度間伐が必要になるからである(図74、表47を参照)。したがって地位1、2等については、植栽本数をそれぞれ2,000本/ha、2,500本/ha程度に減らした方が、収量比数0.6の密度管理は容易になる。

⁸⁵ 林野庁 (1995) 複層林の造成管理技術の開発. 林野庁. 156pp.

⁸⁶ Kanazawa, Y., Kiyono, Y. and Fujimori, T.(1985) Crown development and stem growth in relation to stand density in even-aged pure stans() Clear length model of *Cryptomeria japonica* stands as a function of stand density and tree height. J. Jpn. For. Soc. 67:391-397

なお、収量比数0.6の林分は疎仕立てであるため、枝下高の枯れ上がりが遅れることは免れない。 しかしながら、1等地の林分では35~40年生以降に10m以上の枝下高が期待されるので(モデル計算上) 狩り場としての機能も十分に果たせるものと考えられる。

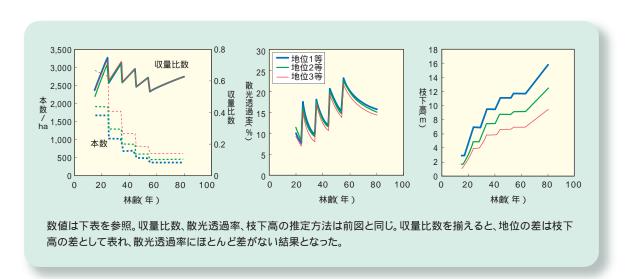
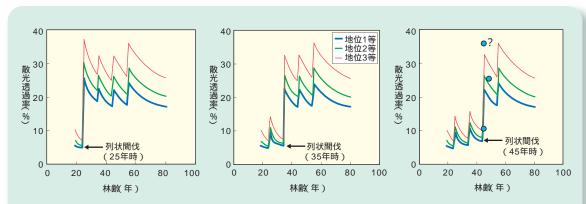


図 74 スギ林の閉鎖直後から収量比数(Ry)を0.6付近に維持するための間伐コースの例


表 47 スギ林の林冠閉鎖直後から収量比数(Ry)を0.6付近に維持するための間伐コースの例 3,000本(/ha)植栽では地位1、2等で15年生頃から間伐が必要となる。植栽本数の削減が考えられる。

林齢		15年		25年		35年		45年		55年	
地位	植栽	間伐率	Ry	間伐率 (立木本数)	Ry	間伐率	Ry	間伐率 (立木本数)	Ry	間伐率	Ry
1等	3000	40%(1677)	0.54	40%(1006)	0.63	33%(674)	0.59	30%(471)	0.56	25%(353)	0.53
2等	3000	33%(1912)	0.50	33%(1281)	0.59	33%(858)	0.59	30%(600)	0.56	25%(450)	0.53
3等	3000	-	0.54	35%(1781)	0.60	35%(1157)	0.59	30%(809)	0.56	25%(606)	0.53

列状間伐(スギ)

列状間伐では、伐採列は大幅に明るくなるため散光透過率10%以上の明るさの維持は容易になる。図75に示すように、列状間伐を実施した時点から伐採列の散光透過率は急上昇し、しばらく維持されることから、早期に列状間伐を実施し、その後、定性間伐と組み合わせるのが容易である。図75 は2伐4残(33%)の場合を算出したものであるが、林齢に関わりなく列状間伐実施後には、地位1等地でも20%以上の散光透過率が期待されることを示している。1列伐採では林冠閉鎖が速いため、光環境の維持には2列伐採が適している。ただし、残存列の内側は間伐効果が得られないことから、定性間伐と組み合わせるのが望ましい。また、間伐率が許容されれば、2伐3残(40%)も可能と考えられる。

なお、比較的若い年代に実行した列状間伐林分では、伐採列に面した林木の枝下高の枯れ上がりが遅れ、伐採列には広葉樹が繁茂しやすいので、オオタカが林内で飛翔する狩場としては適さないと考えられる。逆に、第1(2)回目までは定性間伐を実施し、枝下高が十分に上がった段階(例えば45年生時)で列状間伐を実施すれば(図75の右)、林内に通り道ができることとなり狩場としても使われることが期待される。いずれにしても、列状間伐を入れた後は、定性間伐を併用して長伐期林へ誘導し定性間伐林分の構造に近づけることが望ましい。

林齢25、35、45、55年生時に本数間伐率33%の間伐を行うこととし、左からそれぞれ林齢25年、35年、45年時に2伐4残の列状間伐を行った場合を示す(その年時以外の間伐は定性間伐を想定)。

地位別樹高曲線は関東・阿武隈地方すぎ林林分収穫表、林野庁・林業試験場 1955)、収量比数は北関東・東山地方ス ギ林分密度管理図(林野庁監修 1999)を用いて推定した。散光透過率の推定方法は本文を参照。右図の青色の点 は、モデル地区の調査林分(地位2等)の間伐前後の数値を示す(?印は過大評価の可能性があることを示す)。

図 75 列状間伐(2伐4残)を実行する林齢を変えた場合の地位別の 林内散光透過率の経年変化のシミュレーション

2) ヒノキ単層林の密度管理と林内散光透過率 スギと同様にヒノキの関東地方の地位別の標準樹高曲線を以下に示す。

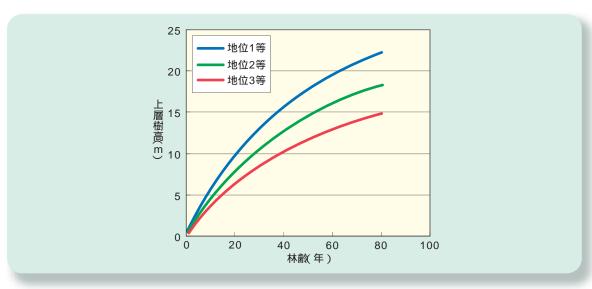


図 76 ヒノキの地位別の上層樹高曲線 関東地方ひのき林林分収穫表(1961)より

定性間伐 (ヒノキ)

スギと同様に「森林の管理経営の指針」(関東森林管理局2005)の目安に基づいて、30、40、50、65年時に定性間伐を行った場合の散光透過率等を算出した結果を図77に示した。ここでは本数間伐率を25%とした。この間伐率では、地位2等地の林分で10%以上の程度の明るさが確保されるのは、2回目(40年)の間伐以降である。3等地では間伐前から15%を超える明るさがあり25%の間伐でその明るさは十分に維持されるが、地位1等地では散光透過率10%の維持は困難となっている。しかし、スギ林と同様、1等地では枝下高の枯れ上がりが速いため、2回目(40年生)の間伐以降からオオタカの狩場となることが期待できるであろう。

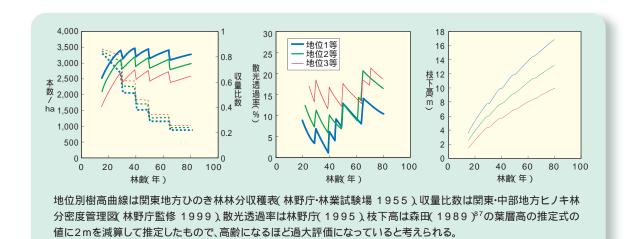


図 77 ヒノキの標準的な間伐コース(30、40、50、65年時に本数間伐率25%の定性間伐)における 地位別の立木本数、収量比数、林内散光透過率、枝下高の経年変化のシミュレーション

ヒノキ人工林の場合、散光透過率10~30%の明るさを維持するには、収量比数0.65前後で密度管理する必要があるが、3,500本/ha植栽、定性間伐の場合について、地位別の間伐コースの1例を図78に示した。間伐実行の林齢は上記の関東森林管理局の目安と一致させたが、地位1等、2等の林分については、林齢20年生頃より間伐(本数で33~40%)を実施する必要がある。これは、第1回目の間伐を30年生時とすると、収量比数0.6にするには50%以上の強度間伐が必要になるからである(図78、表48)。なお、ヒノキの場合、強度間伐は樹勢を衰えさせ枯損を招く場合があるので注意が必要である。また、スギと同様に、地位1、2等については植栽本数の削減も考えられるが、ヒノキの場合は活着、初期成長がスギに比べ悪いので現地の経験から十分に検討する必要がある。

なお、収量比数0.65の林分では枝下高の枯れ上がりが遅れるが、1等地の林分では40年生以降には10m以上の枝下高が期待され、狩場としての機能も十分に果たせるものと考えられる。

⁸⁷ 森田栄一(1982)林況診断表の作成()-九州地方ヒノキ林における樹冠長比-.日林九州支研論集35:31-32

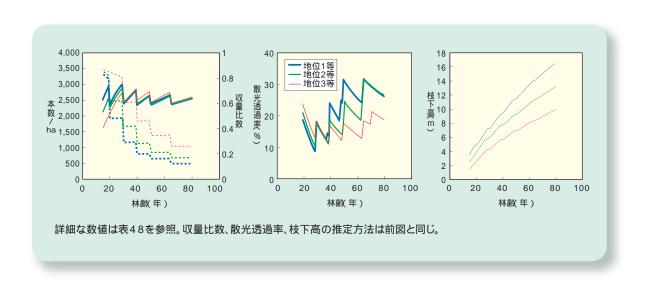


図 78 ヒノキ林の閉鎖直後から収量比数(Ry)を0.6 - 0.7付近に維持するための間伐コースの例

表 48 ヒノキ林の林冠閉鎖直後から収量比数(Ry)を0.6 - 0.7付近に維持するための間伐コースの例 3,500本 (/ha) 植栽では地位1、2等で15年生頃から間伐が必要となる。

林齢		15年		25年		35年		45年		55年	
地位	植栽	間伐率	Ry	間伐率 (立木本数)	Ry	間伐率 (立木本数)	Ry	間伐率	Ry	間伐率	Ry
1等	3500	40%(1892)	0.59	40%(1135)	0.61	32%(771)	0.60	22%(601)	0.59	22%(468)	0.59
2等	3500	25%(2472)	0.56	33%(1656)	0.61	33%(1109)	0.59	25%(831)	0.58	20%(664)	0.53
3等	3500	-	0.53	25%(2424)	0.60	25%(1818)	0.62	25%(1363)	0.61	25%(1022)	0.60

列状間伐(ヒノキ)

スギと同様に林齢30年生以降の2伐4残の列状間伐で、伐採列には十分な明るさの確保ができる。ただし、地位(2)3等地では30年生時では樹高が低く、明るくなりすぎるため、第1、2回目の間伐は定性間伐が無難と考えられる。また、ヒノキはスギに比べ強度間伐に弱い(樹勢が衰えることがある)ことも念頭に置く必要がある。その他は、スギに準ずると考えられる。

3) カラマツ単層林の密度管理と林内散光透過率

図79は「信州地方カラマツ林収穫表」の地位別の標準樹高曲線である。

定性間伐(カラマツ)

「森林の管理経営の指針」(関東森林管理局2005)の目安に基づいて、25、35、45、60年生時に33%(本数間伐率)の定性間伐を行った場合を想定して、散光透過率等を算出した結果を図80に示した。カラマツ林の場合は林内散光透過率と収量比数の関係が強く、ここで用いた林内散光透過率の推定式(林野庁199585)に枝下高には組み込まれていない。

カラマツでは、地位 1 等地においても第 1 回間伐前から10%以上の散光透過率となっており、 林内はスギ、ヒノキに比べかなり明るく、10~30%の散光透過率の維持は比較的容易である。こ のように明るいカラマツ林でも、収量比数0.85以上の林分では0.85未満の林分に比べて広葉樹の 種数がかなり少ないことが知られている(林野庁1995)。地位 1、2 等地においても、収量比数0.6 ~0.8になるように通常の間伐を実施すれば、15~25%の明るさが確保できるのはスギ、ヒノキと の大きな違いである。

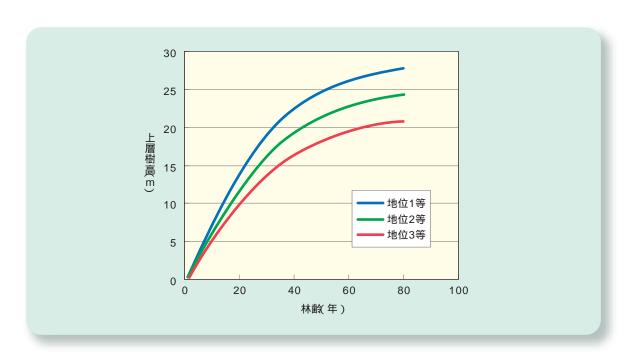


図 79 カラマツの地位別の上層樹高曲線 信州地方カラマッ林収穫表(1955)より

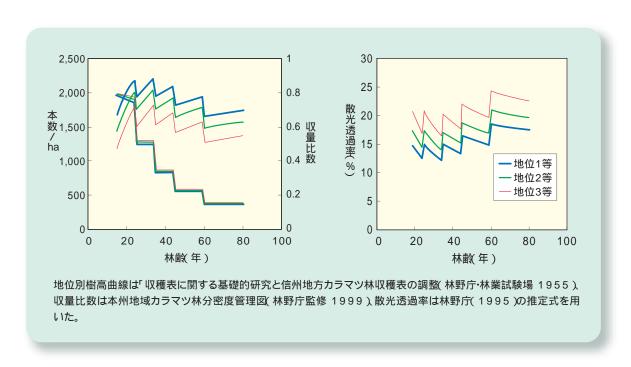
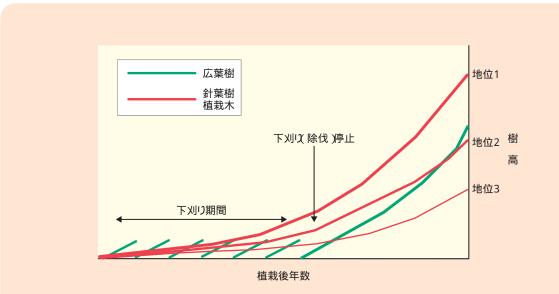


図 80 カラマツの標準的な間伐コース(25,35,45,60年時に本数間伐率33%の定性間伐) における地位別の立木本数、収量比数、林内散光透過率の経年変化のシミュレーション

列状間伐(カラマツ)

カラマツの列状間伐については北海道で長年の実績があり、その伐採形態は1伐2残(33%) 1伐3残(25%)、2伐3残(40%)等が多いが、20年生以下で列状間伐を実施し(20~30%の散 光透過率が得られる)、伐採列にトドマツやアカエゾマツを植栽する場合が多い。最近では、1回 目に1伐2残の列状間伐、2回目に定性間伐を実施し、その直後にトドマツ等を植栽することが よく行われている。モデル地区においても、カラマツ林とヒノキやスギを組み合わせる施業も可 能であるが、「帯状伐採地にアカエゾマツ等を植栽した2段林を営巣林としているオオタカは極め て稀であった」(工藤2005⁸³)等の報告もあることから、いたずらに針葉樹の2段林を作るよりも、 広葉樹との混交林化を目指す方がよいと考えられる。針葉樹-針葉樹の複層林の林内は暗くなり やすく、広葉樹の更新も少なく、鳥類にとって好ましい環境ではない。


カラマツの列状間伐の場合、1列伐採であれば散光透過率は20%前後で低木層の導入に適しているが、地位2~3等地の若齢時の2列伐採の場合は透過率30%以上になると予測されるので、伐採列に更新した広葉樹は成長して混交林化する可能性が高くなる。

(2) 針広混交林への誘導

1) 下刈り・除伐期における導入

地位の低い尾根部などでは、往々にして植栽した針葉樹の成長が悪く、下刈りや除伐を繰り返しても更新した広葉樹の成長に追いつかずに針広混交林になった人工林(いわゆる不成績造林地)が見られる。このように広葉樹林化しやすいところでは、除伐を徹底したために成林しなかった例も知られており、潔癖な下刈り・除伐を行わずにそのまま共存させていくのが省力の上でも得策である。また、若いスギ・ヒノキの造林地では、混入した広葉樹が鳥類の営巣木として利用されることも報告されている(由井・石井1994⁸⁸)。

図81に、地位と下刈り(除伐)と針広混交林化の関係を示した。針広混交林化は、尾根や斜面上部など地位の低いところほど容易で、下刈り(除伐)時に有用広葉樹があればそれを残し、無い場合は植栽木が健全であれば周囲を坪刈りするような柔軟性を持って実施するのがよい。

地位の高い立地(図中の地位1)では植栽木は短く下刈り期間で雑草木との競争から抜け出るが、地位の低い立地(地位2、3)では、下刈りを繰り返しても雑草木との競争から抜け出ることができず、下刈りを止めると雑草木(広葉樹) と競合(地位2) あるいは被圧される(地位3)。

図 81 地位と下刈りと針広混交林化の関係

広葉樹が過密になり樹高が10m程度になったら、立て木を決めて除間伐するが、針葉樹は広葉樹の樹冠下でもある程度待機できるので、広葉樹の優良材生産を第一目標に除間伐を行う。一般に、広葉樹類(雑木)は針葉樹と異なり、特に除間伐をしなくても二次林が成立するが、除間伐を行うことによって成長を促進させ、目的の林型に早く誘導できる。

⁸⁸ 由井正敏・石井信夫 (1994) 林業と野生鳥獣との共存に向けて - 森林性鳥獣の生息環境保護管理 - . 279pp . 日本林業調査会 . 東京

2) 閉鎖林への広葉樹パッチの導入

閉鎖後の針葉樹人工林に群状伐採を実施して、有用広葉樹の導入を図る試みが近年各地で行われるようになったが、天然更新を期待する場合は、必ず稚幼樹の存在や母樹の結実状況・種子の飛散距離等を確認してから行うべきである。埋土種子の発芽もあるが、2代目、3代目の造林地では、有用広葉樹の発生は期待できそうにない。なお、広葉樹の植栽は、直根性であるため針葉樹よりも活着が難しいが、ケヤキ、クリ、ミズナラ、キハダ、ヤチダモ(湿地性)などはよく植栽されている。

樹種によって異なるが、ケヤキやミズナラなど(耐陰性中程度)が健全に成長するには、散光透過率で少なくとも30~40%以上の明るさが必要であり、間伐ではその明るさの維持は困難なため、高木性広葉樹の導入には群状伐採や帯状伐採が行われる。伐開地(ギャップ)の明るさは、幅や広さでだけで決まるのではなく、周辺林冠の高さや伐採前の林内散光透過率、地上高によっても変化する。伐開地に更新した広葉樹が成長し、周辺人工林の林冠との高さの差が小さくなると、散光透過率はその差に反比例するように増加する。そのため、広葉樹が旺盛な成長を始めれば、光環境は自ずと改善されることとなり、明るさの管理に配慮する必要はなくなる。なお、ここではギャップの散光透過率をギャップ中央部のもので代表しているが、林縁部では中央部の約70~90%に低下する。

群状伐採による導入

伐開地の中央部の散光透過率が少なくとも40%必要として、標準的な間伐コース(25、35、45、55年生時に33%の定性間伐)を実施しているスギ人工林において、広葉樹導入に必要な群状伐採の伐採幅(正方形)を算出した結果を図82に示した。ここでは、群状伐採は間伐実行時に同時に行うものと仮定し、伐採幅は1.8m間隔の植栽(3,000本/ha植栽)の列数で表現した。

モデル計算の結果、25年生時で9~6列、35年生時で11~6列、45年生時で12~8列(それぞれ地位1等~3等)の伐採が必要と算出された。林縁部のスギ樹冠の発達と林冠に達した広葉樹の樹冠の大きさを考慮しても、少なくとも6~7列(12.6~14.4m)以上の伐採幅は必要である。なお、算出されたそれぞれの伐採幅はほぼ樹高に等しいことから、樹高以上の伐採幅が最小基準の目安になる。天然更新は、林内に高木性広葉樹(ブナ、ナラ類、クリ、ケヤキ、サクラ類、ホウノキ、シナノキ、ハリギリ、コシアブラ等)の稚幼樹がある場所で、それを中心に林冠高以上の伐採幅で群状伐採を行うのが確実である。天然下種更新の場合は、母樹の位置、結実の状況をよく確認してから伐採し、タネの飛散に合わせて地掻きなどの地表処理を行う必要がある。さらに、広葉樹の更新が不良の場合は植栽を行うことも考慮する必要がある。

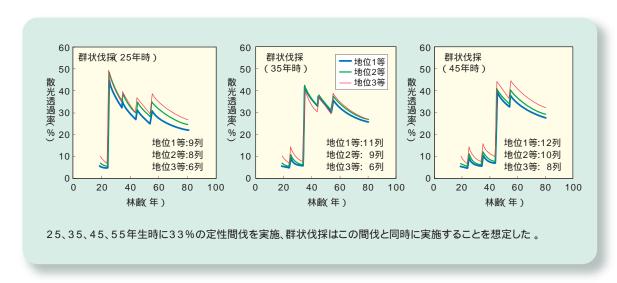


図 82 伐採時の散光透過率が40%以上となる群状伐採(方形)の地位別の列幅(植栽1.8m間隔)

帯状伐採による導入

群状伐採と同様の仮定で、広葉樹導入に必要な群状伐採の伐採幅(帯の長さは50mとした)を 算出した結果を図83に示した。モデル計算の結果、25年生時で6~4列、35年生時で7~5列、45年 生時で8~5列(それぞれ地位1等~3等)の伐採が必要と算出された。ただし、林縁部のスギ樹 冠の発達と林冠に達した広葉樹の樹冠の大きさを考慮すると、少なくとも6~7列(12.6~14.4m) 以上の伐採幅は必要である。さらに、現実には帯の長さはさまざまであり、地形も複雑で幾何学 的に理想的な帯状伐採地は稀であることから、群状伐採と同様に、樹高程度の伐採幅が最小基 準の目安になる。更新方法については、群状伐採と同様である。

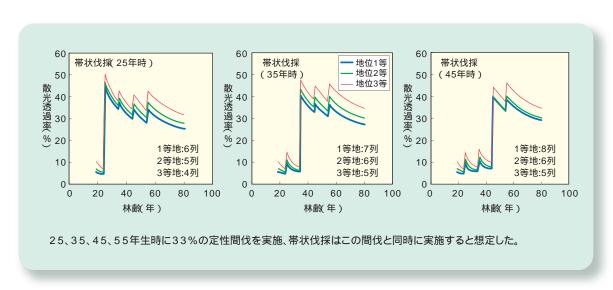


図 83 伐採時の散光透過率が40%以上となる帯状伐採(伐採長50m)の地位別の列幅(植栽1.8m間隔)

広葉樹林化の方法

モデル地区での調査結果によると、オオタカは狩場として広葉樹林を最も選好しており、オオタカの好適餌種が多く生息できるようにするためには1~5ha程度の広葉樹林を適度に(12%以上)交えることが望ましいとされる。そのため、広葉樹林率が10%以下の所(とくにオオタカの営巣地から半径2~3km以内)では、12%程度を目安に人工林の広葉樹林化を進めることが望ましい。

広葉樹林化の方法としては、林内に高木性広葉樹の下層木が十分に存在している人工林では、 群状伐採、帯状伐採を広めに実行することで広葉樹二次林への誘導が可能であるが、一般に人工 林の低木層には高木性樹種は少ないことが多い。しかし、後述するように、高齢林(長伐期林) になると高木性広葉樹が増加することが知られており、長伐期化は広葉樹林化を促すのに必然的 なコースといえる。また、当面の対処法としては、現存する広葉樹林や広葉樹のパッチに隣接す る周辺から広葉樹林化を進める(拡大する)のが確実性が高く、特に広葉樹の多い尾根部では有 効と考えられる。

(3) 針葉樹長伐期林への誘導

 長伐期林の機能、立地特性、リスク要因 長伐期林の機能

針葉樹人工林の適切な長伐期化(高齢化)は、オオタカの狩場や営巣の場を提供する(前述)とともに、植生の種多様性が増加することが多くの県において確認されている(林野庁2005⁸⁹)。さらに、高齢林になると鳥類や小動物による種子散布型の高木性広葉樹が増加し、落葉広葉樹二次林の種組成に類似してくるという知見が得られている(Nagaike & Hayashi, 2004 ⁹⁰)。高齢林では更新した広葉樹が結実し、それが鳥類を誘引することによって、より自然林に近い種組成になると考えられている。

人工林では更新初期と成熟期で野生生物の生息密度が高いので、短伐期施業を繰り返していては成熟期の森林に適応した生物の生息環境が消失してしまう。通常の人工林では、低木層や亜高木層が発達し、成熟した林相を呈し始めるのは林齢40~50年生以上からである。そこで、生物保全のためには長伐期施業の導入が基本で、特に周辺に天然林が少ない地域では、高齢人工林が生物保全に果たす役割は大きい。このように、長伐期施業を導入することによって、人工林の齢級範囲を広げ森林の多様性を向上させることができると同時に、さまざまな林齢からなる林分のモザイク的配置が可能になる。また、適切に密度管理された長伐期林は、水土保全機能においても短伐期(標準伐期)に比べ優れていると考えられており(藤森2000⁹¹)、水源かん養タイプの水土保全林に適しているといえる。

⁸⁹ 林野庁(2005)長期育成循環施業に対応する森林管理技術の開発(大型プロジェクト研究成果).160pp. 林野庁

⁹⁰ Nagaike, T., Hayashi A. (2004) E ect of extending rotation period on plant species diversity in Larix kaemferi plantations in central Japan. Ann. For. Sci. 61: 197-202

⁹¹ 藤森隆郎 (2000) 森との共生 持続可能な社会のために.丸善.236pp

長伐期林の立地特性とリスク要因

長伐期林の立地特性としては、現存する高齢の優良林分が豪雪地帯を除く比較的肥沃な緩斜面に多いことが知られている一方、リスク要因としては台風被害が大きく、台風は南(西)の風が多いため、高齢林が存在する斜面方位は北東~北西に偏ることが全国的に複数の県から報告されている(林野庁2005⁸⁹;石塚2006⁹²)。このため、長伐期化に適した立地条件としては、北東~北西斜面の比較的肥沃な緩斜面といえる。モデル地区においても、このような立地条件の林分は積極的に長伐期林へ誘導すべきであろう。

なお、カラマツは腐朽病害の発生が多い樹種として知られており、土壌の含水率が高い林分ではカラマツの根株腐朽の被害率が高い(黒田・勝屋1995⁹³)ことから、湿った立地は避けた方がよい。ヒノキの根株腐朽病害に関しても、斜面下部や凹地形で被害率が高いこと(勝1971⁹⁴)が知られている。

2) 長伐期林の密度管理と更新

長伐期施業とは、一般に間伐収穫を繰り返して伐期を延長するものである。下刈りなど初期保育の労働力確保と経費捻出が困難な人工林経営の現状から見ても、短伐期を繰り返すより成林した森林から間伐収穫を繰り返す方が低コストと考えられている(藤森2006⁹⁵など)。スギ、ヒノキの場合、間伐の間隔は10~15年前後で、一般に1回目は切り捨て、2回目で柱1玉、3回目で柱2玉、4回目より大径材を収穫するもので、間伐率は密度管理図の収量指数0.6~0.65程度を基準とし、80~120年を最終伐期とすることが多い。

既に述べたとおり、国有林の管理経営指針におけるスギ、ヒノキ、カラマツの長伐期(80年)施業体系はこれに合致しており、モデル計算により、下層木の発達を促すのに十分な林内光環境が得られること(定性間伐では40年生頃から、列状間伐では1回目の間伐から)地位1(2)等地においては、40年生以降には10mを超す枝下高が期待でき、長伐期施業によってオオタカの狩場、営巣林に適した構造へと誘導され得ることを示した。

長伐期林の更新方法としては、最終間伐の後に苗木を植栽して複層林(2段林)施業へ移行する方法も推奨されている(藤森1991⁹⁶など)が、複層林施業は集約的な密度管理と高度な伐出作業が必要とされ、林縁性の鳥類や裸地(伐採跡地)に特有な生物相の生息環境が失われる問題がある。そのため、表土の安定した場所では5ha以下の小面積皆伐による更新、傾斜地では等高線に沿った幅50m(樹高の2倍)程度の帯状伐採による更新も積極的に取り入れることが望ましい。作業上は斜面に垂直の帯状伐採が容易であるが、前述(図68右下)のように山側が遮蔽されるので暗くなりやすいことに留意するとともに、土砂流出の恐れのある急傾斜地では避けるようにする。

⁹² 石塚森吉 (2006) 国補大型プロジェクトを総括する.「長伐期林を解き明かす」(全林協編).58-67.全国林業改良普及協会

⁹³ 黒田吉雄・勝屋敬三 (1995) カラマツ根株心腐病菌の林床での分布. 日本林学会会誌 77:39-46

⁹⁴ 勝善鋼(1971)ヒノキの根株芯腐病.森林防疫 231:141-146

⁹⁵ 藤森隆郎(2006)長伐期施業の意義と課題.全国林業普及協会編「長伐期林を解き明かす」.12-32

⁹⁶ 藤森隆郎 (1991) 多様な森林施業.全国林業改良普及協会.191pp.

第4章

森林施業実施上の留意事項

第4章 森林施業実施上の留意事項

1. 林分配置のデザイン(石塚 森吉)

(1) 森林の機能類型に基づいた国有林の管理経営指針

森林には、木材生産機能、水土保全機能、レクリエーション機能など、多様な公益的機能の発揮が期待されている。現在、国有林では、それぞれの機能を効率的に発揮させるために、森林(林分)の機能別類型化とゾーニングが行われ、機能類型ごとに森林管理経営の詳細な指針が作成されている(「森林の管理経営の指針」、関東森林管理局2005)。

国有林による森林の機能類型は、

水土保全林(国土保全タイプ、水源かん養タイプ) 森林と人との共生林(自然維持タイプ、森林空間利用タイプ) 資源の循環利用林

に区分されている。

水土保全林(国土保全タイプ)は、山地尾根部や上部斜面など保護樹林帯になっている場合が多く、国有林の管理経営指針においては、天然更新により的確な更新が可能な林分では群状択伐等により積極的な広葉樹の導入を図ることとし、1回の伐採面積は1ha以下に制限されている。水土保全林(水源かん養タイプ)は水源地帯の山地斜面を占め、長伐期化の推進、天然更新が可能な人工林については択伐等により積極的に広葉樹の導入を図り、針広混交林への誘導に努めることとしている。伐採面積は5ha以下とし、モザイク配置に努め、尾根、斜面中腹、渓流沿い、林道沿線等には、片側30mあるいは全幅50m程度の保護樹林帯を設けることとしている。

資源の循環利用林については、伐採面積は保安林等の制限林で5ha以下、その他では概ね20ha以下である。ただし資源循環利用林においても、水土保全林(水源かん養タイプ)と同様に、保護樹林帯を積極的に設定すること、有用広葉樹を積極的に保残すること、伐採箇所は林分のモザイク化のために分散させ、連続して伐採を行う場合は保護樹帯を設定するか、または隣接する新生林分のうっ閉後に伐採することとしている。

このような現在の国有林の管理経営指針は、オオタカの生息環境保全を目的とした森林管理の 指針としても概ね妥当と考えられ、これらの指針に基づいて適切に施業を実施していくことが重 要である。以下、この国有林の管理経営指針を前提に、補強が望まれる2,3の事項と、最後に 林分配置の技術的な方法について述べる。

1) 老齢木、樹洞木、立ち枯れ木、倒木の保残

老齢木、樹洞木、立ち枯れ木、倒木の存在は、鳥類やリス、多くの昆虫など樹上や幹の中で生活を営む動物の生息環境を提供する。老齢木はオオタカ等猛禽類の営巣木となる可能性もあり、成熟した天然林がほとんど残っていない地域では、このような木を積極的に保残することが強く望まれる。また、これらの保残木は単木としてではなく、周囲も群状に残すことが有効である。

2) 広葉樹を主とした保護樹帯の拡大

尾根筋と沢筋の広葉樹林は山腹の人工林を風害から保護し、水土保全や野生生物の保全にも重要な機能を果たす。そのため、国有林の保護樹帯設定基準(表49)においても、尾根筋と渓流沿いには、積極的に保護樹林帯を造成することが求められているが、幅は片側30mまたは50mとする基準は最小限のもので、特に尾根部では孤立状の保残木は枯損しやすいので可能な限り林帯を拡大することが望まれる。また、自然林のない渓流沿いには、ケヤキやハルニレ、シオジ(北陸、東北以北ではヤチダモ)などを植林し、連続的な広葉樹林帯を造成することが望ましい。なお渓流沿いはケヤキ、シオジなど有用広葉樹の造林適地で、これらの材の価格は将来にわたって期待できるものである。

表 49 保護樹帯設定基準

1設定目的 保護樹帯は、新生林分の保護、林地の地力の維持、渓流に対する土石等の流入の防 止、渓岸の崩壊防止、道路の保護および景観の維持等の公益的機能の確保のため積極 的に設定し、また、小動物が移動するための回廊としての機能を併せ持つ連続した保 護樹帯の設置に努める。 2 設定方法 (1) 林地の保全を目的とした保護樹帯 ア 主要な尾根筋の両側、斜面の中腹、渓流沿い等必要な箇所に設定する。 イ 幅は、尾根筋にあっては片側概ね30mずつ、尾根筋以外にあっては概ね50m 以上を基準とする。 (2) 防災を目的とした保護樹帯 ア 荒廃の防止および林道保護等のため、渓流沿いおよび林道沿線等現地の状況 に応じ、必要な箇所に設定する。 イ 幅は、概ね50mとし、現地の状況に応じて増減させることとする。 (3)景観の維持を目的とした保護樹帯 ア 景観維持のため道路沿線の必要な箇所に選定する。 イ幅は、概ね50mとし、現地の状況に応じて増減させるものとする。 3施業上の (1)保護樹帯は、広葉樹の中小径木をha当たり100~150m2以上成立させること 取り扱い を目標とする。 (2) 伐採は、択伐率30%以内の単木択伐を原則とする。 (3) 伐採の時期は、効率的な事業実施を旨として隣接林分の主伐または間伐時に同 時に行うことを原則とする。

[「]関東森林管理局(2005)森林の管理経営の指針-国民の期待に応える管理経営を目指して-」より

3)林分の形と大きさの決定

林分(伐採面)の境界の決定は、伐採によって隣接林分に風害が発生するのを最小限にすることが重要である。そのためには、林分の境界は広葉樹林帯で保護することが望ましい。特に台風被害を受ける可能性の高い南(西)斜面から保護樹林帯の設定(造成)を進めたい。林分毎に幅50mの保護樹林帯を設定(保護樹帯設定基準)することにより、1~5haの林分の周囲に3ha~5haの広葉樹林の造成が可能になる。伐採面の形は伐木集材作業の効率を優先させることとなるであろうが、自然な多様性を生み出すために長い直線や直角、平行線、対称形は避け、できる限り周囲の地形や植生に調和させるようにする。林分の大きさについては国有林の指針(林分の機能類型や制限に応じて1~5~20ha)に従うが、複数の地形をまたがるような大きな面積を避け、その地域の地形に応じた大きさにすることが望ましい。

(2) 林分配置の方法

1) 齢級分布の平準化

人工林において木材の保続生産を行うためには、林分の齢級分布をできる限り平準化(齢級ごとの森林面積を揃える)する方が容易となる。もちろん、伐期と伐採面積を様々に設定することにより、偏った齢級分布のままでも保続生産はできる(広義の法正林)が、できる限り齢級構成を均等にする方が、管理は容易である。

人工林の齢級の偏りを平準化する簡便な方法としては、大面積の同齢単純林において小面積皆伐と長伐期施業を組み合わせた伐採・植栽計画を立てることである。隣接する同齢級の林分とあわせると合計面積が数十haを超えるものもあり、まずこのような人工林を分割し、分割数によって5~20年の間を置いて伐採・造林を実行し、それぞれの林分を原則的に長伐期に持っていくことで齢級を平準化させることができる(石塚 1997⁷⁰)。

2) 林分のモザイク配置と伐期(ローテーション)の決定方法

極相林といわれる各地の天然林において林木の樹齢構成をみると、大まかに更新期、建設期、成熟期に分けられるほぼ同世代のさまざまな大きさの集団(パッチ)がほぼランダムに分布し、モザイク配置をなしていることが世界中の森林から知られている。天然林は風害のような自然攪乱を受けながら、この構造を動的に維持し、生物相の多様性も維持している。

人工林地帯においても、さまざまな齢級のさまざまな大きさの林分をモザイク状に配置させ、計画的な管理によってその構造を維持することで、諸被害に対して柔軟性が高く、生物相にとっても多様性の高い環境が維持できるものと考えられる。それに広葉樹の保護樹林帯が加わることで、さらにリスクに強く多様性の高い森林ランドスケープとなる。

ここで、齢級の配置に多様性をもたせるための原則は、伐採地に隣接する林分を10年以内は伐採しないことである。ただし、さまざまな齢級のモザイク配置は多くの林縁を発生させることになるが、林縁をいたずらに多くすることは林縁選好種を増やす一方、純森林性種を減少させることになる(由井・石井 199488)。この点を考慮すると、1伐区の面積は数haのまとまりがあった方が、モザイク配置による林縁の増加を抑えることができるであろう。北海道石狩のオオタカは、林縁から200m以内の林内と開放地という異なる2つのハビタットを好む(Kudo et al., 2005 84)にとを考慮すると、現在の国有林の1伐採面の制限(水源かん養タイプ5ha以内)は妥当なものといえ

る。

伐期の決定にあたっては、施業計画の中で成熟した高齢人工林がある程度面的に維持されるよう配慮する。このことは、例えば、林齢40年で成熟期に達する場合、40年伐期では成熟期の林分は出現とともに消滅してしまうからである。この場合、林齢とその面積が平準化されているとすると、次式により伐期を決定することができる(Perry 1994⁹⁷)。

伐期(輪伐期)=成熟期に達する林齢/(1-成熟林分の比率)

いま、モデル地区の森林の成熟期に達する林齢を40年、オオタカの狩場や営巣林、好適餌種鳥類の生息に必要な成熟林分の比率を50%とすると、伐期は40/(1 - 0.5)=80年となる。また、成熟林分の比率を60%に上げると、伐期は40/(1 - 0.6)=100年となる。

なお、更新初期(林冠の未閉鎖期)の林分の比率は、次式により算出することができる。

(1-成熟林分の比率)/(成熟期に達する林齢/林冠が閉鎖する林齢)

例えば、林冠が閉鎖する林齢を10年とし、成熟林分の比率が50%の場合、未閉鎖林分の比率は 12.5%になる。

しかし、林齢と林分面積が平準化されていない場合、輪伐期はこのように一律には定まらない。 現実には、樹種毎に林齢と林分面積には大きな偏りがあり、伐期にも長伐期と標準(短)伐期が あるため、成熟林や未閉鎖林の面積を一定に近づけるには、目標計画法などを用いて伐採計画を たてる必要がある。また、計画的な長伐期化は最重要課題と言える林齢と面積の平準化を進める ための有効な手段である。

3) 林分配置のモデル

これまでの知見と考察をもとに、オオタカの生息環境の維持・保全と共存する森林施業・管理システムの理想的なイメージを描いたのが、図84である。これは、Harris (1984)⁹⁸の「long-rotation island」(ここでは「島状長伐期システム」と訳す)をベースにしたもので、中心(ここでは営巣林を表す)には、老齢の保護林を配してある。Harrisは、伐採林分を輪伐期の中間位の林齢の林分に隣接させることで、隣接林分の林齢差が平均的に最大になるとしている。1つの島システム(図全体)における林分数が奇数の場合は、一つおきの林分を順に伐採していくように林分配置をすれば、隣接林分の林齢差が最大になる。

このイメージ図は、これまで考察した以下のような事項を念頭に描いたものである。

- * 営巣林(老齢林)を中心に半径2~3kmに7個(伐期80年)か9個(伐期90年)の針葉 樹人工林の林班(3~4ha)を、齢級を飛び石状にして配置する。これにより、隣接する 林分の林齢差を最大化し林縁を作設する(林縁性の鳥類の生息環境)。
- * 既存の広葉樹林は残し、林班の境界には可能な限り広葉樹の保護樹林帯を設定し、広葉 樹林率を1割以上にする(森林性の鳥類の生息環境)

 $^{^{97}}$ Perry, D.A. (1994) Forest ecosystems. The John Hopkins University Press. Baltimore and London. 649pp.

⁹⁸ Harris, L.D. (1984) The fragmented forest. The Umiversity of Chicago Press, p.127-144.

- * 人工林は40年生までは、列状間伐と定性間伐を併用し広葉樹低木層の導入を図り、40年生以降は定性間伐で狩場環境を整える(森林性の鳥類の生息環境とオオタカの狩場環境)。
- * 尾根筋や沢沿いは広葉樹林化(針広混交林化)を促進する(人工林の保護と自然度の高い森林の連続性の確保)。

これらは、あくまで理想的な机上のプランであるが、実際にオオタカと共存することを目的と した森林施業計画を策定するときの目安になると考えられる。

なお、ラジオテレメトリー調査の結果からは、オオタカの生息環境としての森林施業上の配慮範囲は、1つがい当たり巣から半径2km(可能であれば3km)程度、また、ノスリの場合は1つがい当たり巣から半径1km程度が必要と考えられる。

図 84 Harris (1984) の島状長伐期システムをベースにしたオオタカと共存する林分配置のイメージ

営巣林(老齢林)を中心に半径2~3kmに7個(伐期80年)か9個(伐期90年)の針葉樹人工林の林班(3~4ha)を齢級を飛び石状にして配置する。既存の広葉樹林は残し、林班の境界には可能な限り広葉樹の保護樹林帯を設定し、広葉樹林率を1割以上にする。人工林は40年生までは、列状間伐と定性間伐を併用し広葉樹低木層の導入を図り、40年生以降は定性間伐で狩場環境を整える。また。尾根筋や沢沿いは広葉樹林化(針広混交林化)を促進する。(石塚・原図)

写真 46 アカゲラ (撮影:内田博)

写真 47 アオゲラ (撮影:内田博)

2. 主伐の計画・実施にあたっての留意事項(由井正敏)

ここでは、主として主伐を行う場合のオオタカの保護対策を述べる。それ以外に影響のある事業については次節「その他の事業にあたって (149ページ)」で述べる。施業実施林分およびその外縁から400m以内の巣の存在の有無、巣の新旧については既に情報を得ているものとして、巣の状況によって下に手順を示す。以下に示す巣の状況ないし分布地域は、施業実施林分およびその外縁から400mまでの範囲内に巣がある場合に限定し、それ以遠に巣がある場合は直接的には考慮しなくても構わない。ただし、どの林分であれ使用可能な巣の保存には配慮し、常にオオタカに好適な環境の維持に留意する必要がある。

(1) 伐採計画

計画樹立の際の配慮事項を示す。なお、次の記述で伐採可能とした場合でも、伐採は巣立ちした幼鳥が親離れする30~40日後からとし、繁殖期の繁殖活動が途中で失敗した場合には、その1カ月後から伐採の実施は可能な計画とする。

1) 皆伐の場合

繁殖巣があった場合

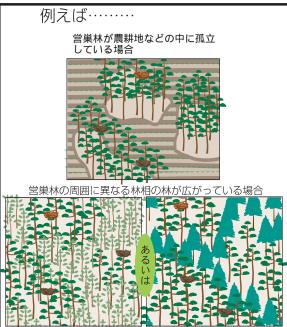
営巣林での皆伐は、当面、繁殖巣の周辺12~36haの範囲については見合わせ、使用可能な複数の巣とともに保全し、さらに周辺に営巣候補木のある林分や新たな営巣木のある林分(12~36ha)が保全された時点(新たな条件が整った時)で既存の巣の保存に留意しつつ、一度に伐採せずに数年にわたり1haずつ段階的に実施する。

営巣木が1本の場合:

皆伐を控える。

営巣木が2~3本の場合:

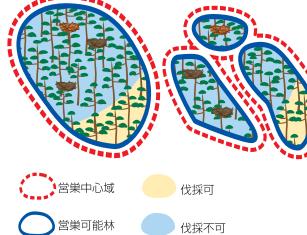
営巣中心域(営巣林)および周辺で、現存するすべての営巣木が含まれる面積12~36ha以上が保全されている場合のみ、小面積の伐採(1ha以下)を行うことができる(図85参照)。ただし、この場合も、当年使用した営巣木から50m以内の範囲は伐採しないようにするとともに、作業道の設置も控える。また、営巣木を含む林分が孤立しないように配慮する。


営巣木が4本以上の場合

営巣中心域内および周辺で、使用中の巣および最近利用された巣のある営巣木が3箇所以上含まれる面積12~36ha以上が保全されている場合のみ、小面積の伐採(1 ha以下)を行うことができる。可能であれば、現存するすべての営巣木を残すことが望ましい。この場合も当年使用した営巣木から半径50m以内の範囲は伐採しないようにするとともに、作業道の設置も控える。また、営巣木を含む林分が孤立しないように配慮する。

また、3本以上の営巣候補木のある12~36haの営巣可能な林分が、絶えず存在するような伐採 ローテーション計画の中で実施することが望ましい。

全ての巣が一つの林分にある場合 例えば…… 営巣林が農耕地などの中に孤立 営巣林の周囲も同じ林相が広がっている場合 営巣林の周囲に異なる林相の林が広がっている場合 営巣木が 2~3本の場合 営巣木が 2~3本の場合


巣が複数の林分にある場合

営巣木が 4本以上 の場合

営巣木が 4本以上 の場合

※1. 営巣木が4本以上ある場合でも、できるだけ現存するすべての営巣木を残す。

※2. ただし、やむをえない場合は、ほとんど利用されていない古巣のある 営巣木を伐採することも可能である。

使用中の巣

古巣(数字は何年前に使用されたかを表す)

営巣中心域および周辺に、現存するすべての巣を含む面積12~36ha以上の営巣可能林(の範囲)が確保された場合のみ、それ以外の部分(の範囲)について、1ha以下の皆伐ができる。

営巣中心域および周辺に、使用中および最近使用した巣を3ヵ所以上含む面積12~36ha以上の営巣可能林(の範囲)が確保された場合のみ、それ以外の部分(の範囲)について、1ha以下の皆伐ができる。

図 85 営巣中心域内における皆伐実施の条件

繁殖巣以外の巣のみがある場合

モニタリングを行ない、その結果、繁殖巣として確認された場合には前記「繁殖巣があった場合 (144ページ)」に基づいて対応する。

A 使用可能な巣の場合:

- ア. モニタリングの結果、2繁殖期にわたりオオタカが巣から半径400m内に出現しない場合は皆伐計画をたてる。
- イ. 繁殖しないもののオオタカが繁殖期に巣周辺半径400m内に執着している年次の間は、皆伐は見合わせる。

B 使用不可能な巣の場合:

- ア. モニタリングの結果、繁殖期にオオタカが出現しない場合は皆伐計画をたてる。
- イ. 使用不可能な巣を含む周辺地域にオオタカが執着している場合は、翌春のモニタリングの結果によって「ア」の適用を判断する。

2)間伐の場合

繁殖巣があった場合

繁殖巣の他にも巣がある場合も含めて述べる。

A 対象林分内に繁殖巣がある場合:

- ア. 数年にわたり間伐対象林分で繁殖を行っていたと見なされる場合は、繁殖巣および 使用可能な巣から各半径50m以内の範囲は当面計画対象から除外する。
- イ. 非繁殖期あるいは、繁殖しないことが確定した時点から1カ月以降に半径50m以遠の間伐を実施する計画をたてる。その場合、枝振りがよく将来営巣候補木になるものをヘクタール当たり数本残す。使用不可能な巣の周辺の間伐は非繁殖期に行う計画とする。ただし、繁殖巣から400m以上離れている使用不可能な巣の場合はいつでも間伐は可能である。作業道は半径50m以内の範囲に設定しない。
- ウ. 繁殖巣を含め使用可能な巣が3個以上ある場合は、周辺の営巣侯補木の存在やその 生育を確認の上、次年度以降の非繁殖期に、翌年度繁殖の可能性のある既存の巣2 個の周囲50mの範囲を残して、その他の巣の周辺50m以内の範囲の間伐を行う計 画をたてる。その場合も営巣木は残す。
- エ.各巣から50m以内の範囲におけるオオタカの飛翔支障木や営巣木に絡まるツル類は、 ウ.の作業時に取り除く。ただし、最終的に周辺から巣が丸見えにならないように注 意する。
- オ. その後営巣木が増えた際は、ウ.に従って巣2個の周囲50mの範囲を残して間伐を追加実施する。
- カ. モニタリングの結果、その後の年に林分内で定着繁殖していない場合は、営巣木を 残し間伐を実施する。
- キ. 間伐林分の繁殖巣以外に林分外400m以内の範囲にも同じつがいの使用可能な巣がある場合は、それらを合わせて2個以上の巣を確保するように、上記にならって間伐計画をたてる。

B 対象林分外にのみ繁殖巣がある場合:

- ア. モニタリングの結果、繁殖中であるか、または間伐計画実行年に繁殖する可能性がある場合は、繁殖巣から400m以内の範囲での間伐は、繁殖期を避けて実行する計画をたてる。
- イ. 繁殖期以外の時期、あるいは繁殖しないことが確認された時点から1カ月以降には、 繁殖巣から半径50m以遠の間伐対象林分の間伐は実行可能である。ただし、間伐対 象林分にそのつがいの使用可能な巣がある場合は、当面、繁殖巣から400m以内の ものは半径50m以内の範囲での間伐は行わない。
- ウ. その後の間伐は前述「対象林分内に繁殖巣がある場合: (146ページ)」のウ.以下による。
- エ. 間伐対象林分内外に使用可能な巣がない場合は、間伐対象林分内に営巣候補木をへ クタール当たり数本保残する。

繁殖巣以外の巣のみがある場合

モニタリングを行ない、その結果、繁殖巣として確認された場合には前記「 繁殖巣があった場合 (146ページ)」に基づいて対応する。

A 使用可能な巣の場合:

- ア. モニタリングの結果、長期にわたりオオタカが出現しない場合は間伐計画をたてる。
- イ. 繁殖しないもののオオタカが巣周辺に執着している場合は、5月中旬以降に半径50m以遠の範囲の間伐計画をたてる。その後もモニタリングを続け、繁殖巣を含め使用可能な巣が2個以上ほかに保全された時点で、50m以内の範囲の間伐を行う計画とする。

B 使用不可能な巣の場合:

- ア. モニタリングの結果、長期にわたりオオタカが出現しない場合は間伐計画をたてる。
- イ. 使用不可能な巣を含む一帯にオオタカが出現している場合は、間伐対象林分内の使用不可能な巣およびその周辺は5月中旬以降に間伐する計画をたてる。

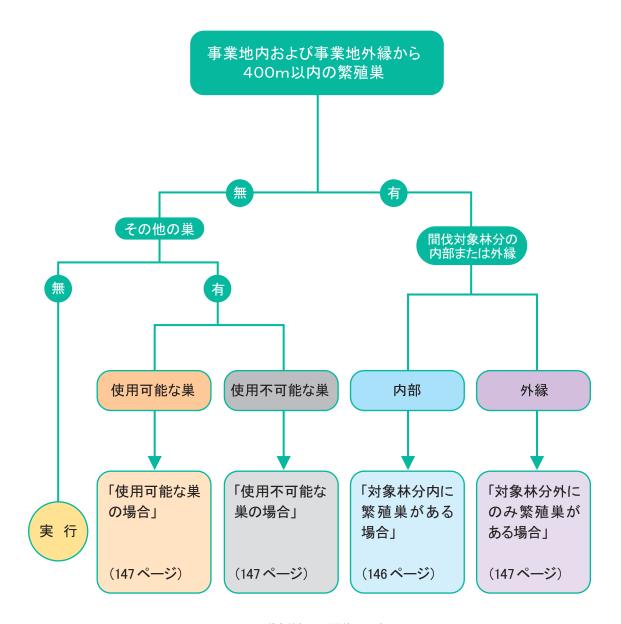


図86 伐採計画(間伐)の概要

(2) 主伐の実行

以上の手順を踏まえ、皆伐・間伐を実行する際に留意すべき要点をあらためてまとめておく。

1) 皆伐

皆伐対象林分内外の繁殖巣、使用可能な巣、使用不可能な巣の所在を再度チェックする。 皆伐実施直前に繁殖・生息状況を再度確認する。

営巣木が1本しかなくオオタカが繁殖している場合は営巣中心域で計画されている皆伐は 実施しない。また、巣の周辺400m内は繁殖中の皆伐は行わない。

2本以上の営巣木があり、かつ他の営巣木の条件が整った場合に、繁殖巣から半径400m以内で計画されている皆伐は、繁殖期を避けて実施できる。その際、営巣中心域内の皆伐面積は1年当たり1ha以内とし、その年度に使用した巣は残すとともに、使用可能な巣も極力残す。また、その年利用した巣から50m以内の範囲は保残する。

繁殖していないものの、過去に繁殖に使った巣または使用可能な巣があり、オオタカが定着している場合は、モニタリングによって次年度以降の皆伐実施の判断を行う。

オオタカが途中で繁殖に失敗した場合でかつ上記 、 の場合、失敗確認後1カ月以降に皆伐を実施する。

オオタカ生息域では、3本以上の営巣候補木のある12~36haの営巣可能林が持続的に保持されるような育林のローテーション計画をたてる。

長伐期施業を行い、広葉樹を適宜配置するとともに、繁殖、採餌に適した林分の造成に努める。

2)間伐

間伐対象林分内外の繁殖巣、使用可能な巣、使用不可能な巣の所在を再度チェックする。 実施直前に繁殖状況を再度確認する。

間伐実行対象林分内外に繁殖中の巣がある場合は、繁殖巣から半径400m以内は繁殖期を 避けて間伐を実施する。その場合、繁殖巣と使用可能な巣の周辺50m以内の範囲は残す。

繁殖していないものの、繁殖に使った巣または使用可能な巣がありオオタカが定着している場合は、5月中旬以降に巣から半径50m以内の範囲を残し間伐を実施する。

オオタカが途中で繁殖に失敗した場合は、失敗確認後1カ月後以降に間伐を実施する。その場合、繁殖失敗巣および使用可能巣から半径50m以内の範囲を残し間伐する。

上記の対応の結果、残された場所の間伐は、前項「第4章2.(1)伐採計画」に従って、その後に実施する。

その他の巣の場合は前項「第4章2.(1)伐採計画」に従って、必要な巣の保全を図る。 ただし、将来的にまったく使用不可能と判断された巣については、間伐可能とする。 営巣候補木の保護と、営巣候補木となり得るような林木の育成に努める。

(3) その他の事業にあたって

間伐以外の事業の計画・実施・運用における配慮事項をまとめる。

除伐は、上記の間伐計画・実施の手順に従って対応する。

植栽、枝打ち、下刈り、ツル切りの作業は、繁殖巣から400m以遠ではいつでも可能であるが、繁殖巣周辺400m以内は、繁殖期の実施を避ける。

作業道、林道、作業舎、空中索道、治山施設等の開設・設置・修復工事等は繁殖巣から 400m以内は繁殖期を避ける。繁殖失敗を確認した場合はその1カ月後から開始する。

作業道は繁殖巣、使用可能な巣から50m以内には設置しない。作業道の通行は繁殖巣から400m以内は繁殖期をなるべく避け、200m以内には原則立ち入らない。

林道は繁殖巣、使用可能な巣から200m以内には新たに開設しない。ただし、合わせて3個以上の巣が確保できる見通しが立った際は可能であるが、その場合でも50m以内には開設しない。林道の通行は繁殖巣から400m以内では繁殖期をなるべく避け、200m以内には原則立ち入らない。

作業舎は繁殖巣、便用可能な巣から400m以内には設定しない。

空中索道は繁殖巣、使用可能な巣から200m以内では繁殖期には撤去しておく。400m以内の運用は繁殖期を避ける。

治山施設は繁殖巣、使用可能な巣から200m以内には設置しないことが望ましいが、防災 上必要な場合は、営巣候補木が他に保全されるように努める。

コンディショニングの実施

猛禽類は近くで突然各種の作業が開始されると驚いて営巣放棄することが多いが、継続 的な刺激には馴れると指摘されている。したがって、馴化または条件付け(コンディショ ニング)を行えば、猛禽類の警戒距離を短縮し、より営巣地近くでの作業が可能になる。

「コンディショニングとは動物が継続的な刺激には馴れることを応用して、営巣地近くでの工事規模を徐々に大きくすることである。わが国でも各地のダム・林道工事現場で応用されている。標準的な手法はまだマニュアル化されていないため、親鳥の育雛行動をビデオカメラ等で見張りながら試行錯誤的に実施している。例えば、工事開始初日は大型機械の運び込みのみで稼働しない。2日目には気温が高く親が巣を離れても雛が衰弱しない昼間に10分稼働、50分休止を断続的に実施。3日目以降次第に稼働時間を長くしていき、1週間後問題が生じなければフル稼働に移行する。小規模工事では馴化期間を3日位に短縮する。人車の出入り、騒音なども同様に馴化に配慮する。また、非営巣期に巣から離れた場所から工事を開始して徐々に接近し、営巣期に入る寸前には逆に巣から遠ざかる方向に退くような方法もある。主に環境保護区域での工事(予備調査工事も含む)に適用し、営巣中心域は原則として営巣過敏期の工事は避ける。」

[日本林業調査会:森林における野生生物の保護管理 改訂版(印刷中)より]

(4) 生息環境・営巣環境の整備

オオタカが現在生息する地域で各種事業を行う際には、生息環境および営巣環境の整備に ついても全般的に配慮する。

- ・ 餌資源の維持供給、採食空間の確保のために「第2章5」および「第4章1」で述べた 林分管理、林分配置を適正に行う。特に、異齢・異種林を配してのモザイク化、広葉樹林 の混交配置、下層植生、樹洞木の維持・育成に配慮する。
- ・ 家族群の生活環境を維持するために高木林の連続性に配慮する。これは餌動物の移動にも 寄与する。

- ・ 営巣環境を維持・育成するために、既存の巣については極力保全を図るとともに、第2章 で述べた林分管理を適正に行い、営巣候補木を育成、確保する。
- ・ 施業が予定される林分周辺では、適正な林分配置と林分管理により、常時12~36haの好適営巣林(営巣候補木のある林)を維持する。これにより、間伐、皆伐等の事業実施との共存が可能となる。
- ・ 場合によっては、オオタカの営巣場所供与のために、樹木上部に棚を造ることや、営巣候補木での巣造りに邪魔な小枝の刈払いなども配慮する(次ページ参照)。

オオタカが現在生息しない地域においても、健全なオオタカ個体群の維持のため、前述のとおりの森林管理に配慮する。

オオタカ以外の猛禽類についても、オオタカに準じた手法で適正な森林の管理および事業 を行い、その保護に留意する。

以上留意すべき点、配慮事項を取りまとめたが、これは一般的な指針であり、指針どおりに事業計画 を立てることが困難な場合が多いので、専門家の意見を常に聞いて実施する。

「森林施業の実施上留意すべき事項」は本書のほか、「オオタカ等の保護と人工林施業等との共生に関する調査研究(平成9年3月.前橋営林局)」第3章(または市販版「前橋営林局編(1998)オオタカの営巣地における森林施業-生態環境の管理と間伐等における対応-.(社)日本林業技術協会」)に詳しく記載されている。

オオタカの人工巣による営巣地誘導事例

東北緑化環境保全株式会社 環境事業部 山家 英視

オオタカの生息域は、土地利用の進んだ比較的人間活動の盛んな地域にあり、ゴルフ場、住宅団地、高速道路などの 各種建設や森林施業も進められることが多いため、森林にある営巣や採餌環境は消失しやすい。最近、東北地方では、 松食い虫の被害で営巣木のマツが枯死し、オオタカの生息に影響を及ぼす例も見られるようになった(由井・石井 1994)

一方、開発事業地にオオタカが生息することで事業自体を止めたり、事業位置の変更を行うなどの保全措置を講ずる 事例や、事業決定後に開発区域のごく近傍に営巣を始める事例も認められる。また、人命を守るための災害復旧や災害 防止事業地がオオタカの営巣地に近接する場合もある。

このような事象の時に、やむを得ず安全な場所に人為的に営巣を誘導することは、オオタカの保護対策や事業に関わ る代償措置として有効な方法と考えられる。

我々は、オオタカを人工巣に誘導する手法の確立を目的として、東北電力株式会社からの委託研究や自社研究に取り 組んできたほか、事業に関連したオオタカの保全措置として各所で実践してきた。これまで成功したのは2例、他種が 繁殖したのが1例、巣材搬入したなど他種を含め利用した形跡が認められるのは数例であり、手法の確立という観点で はまだまだ途上である。

秋田県の海岸砂防林で行ったオオタカの営巣地誘導研究では、2年間で元の巣から直線距離にして約350m誘導する ことができ、知見も得られた。概要は次のとおりであるが、詳細は山階鳥類学雑誌第35巻1号(2003)を参照してい ただきたい。

同じ一つのペアの営巣地周辺に、1年目に3個、2年目に4個の人工巣を設置した結果、2年連続で誘導に成功した。人工巣は巣台の 上に林床から調達した巣材を積み込み大きさ80cm~90cm、厚さ約40cmに造り上げた(写真)。誘導距離は1年目に170m、2年 目に200mであった(図)。

巣台設置様子

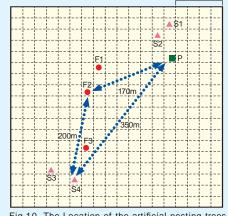


Fig.10. The Location of the artificial nesting trees and nests used for breeding at same pair.

P ; breeding nest of the previous year. F ; artificial nest of the first year.

試験地

使用前

使用後

国内でも営巣地を人工巣で誘導する試みは、いろいろな事業主体により各地で行われてきているが、成功しているケース(荒川茂樹他 2004、勝亦修 2005など)は少ない。今後、誘導成功率を高めるためには事例の積み重ねとともに、関係する情報をオープンにし、それぞれ科学的な目で検証していくことが望まれる。

以下に、誘導成功に向けて留意すべき事項を整理してみた。

巣への執着性

オオタカは使用中の巣があれば、プレッシャーがない限り巣を変えにくい。巣が自然崩落したときに、同じ営巣木や近辺の木に人工巣を作ってやれば利用するというケースは、オオタカに限らず報告例があり(波多野幾也 1999)、猛禽類が同じ場所に固執する習性を有することを示している。

巣の移動距離

猛禽類は、繁殖に際し人間からプレッシャーを受けるばかりではなく、自然状態でも獣類や他の猛禽類、カラス類等から雛や卵の食害を受けたりする。また、風・雪で巣が落下することもある。前者の場合は営巣地を大きく変えるきっかけになると考えられる。オオタカの生息環境は人為的攪乱を受けやすいエリアにあるためよく巣を変える。オオタカが営巣地を1回で移動する距離を調査した結果、約180m(N=17)であった。従って、1回で200m程度の誘導は可能と考えられる。

巣の作り

巣の作り方に関しては、樹林に営巣する猛禽類(クマタカ、オオタカ、トビ、ハチクマ、ノスリ、サシバ)は、自然状態でも他の種が利用した巣を再利用することが少なからず知られている。従って、人工巣を設置する場合、巣台だけではなく、ある程度巣を作り上げておいた方がよいと考えている。

設置場所および設置木の選定

設置場所および設置木の選定が特に重要である。営巣環境を科学的に解明することは難しいが、多くの営巣地をみて気づくのは、営巣木は架巣に適した枝振りで、巣に入り込みやすい空間が確保されていることで、営巣木が歩道や林冠ギャップの側にあるケースも多い。同一ペアでは同じ樹種、樹木上の同じ部位に架巣する例がしばしば見られる。当社所有の比較的若いやや込み入ったアカマツ植林地で、林内を線状に間伐し人工巣を設置したところ2年目で猛禽類の利用形跡がみられた(未発表)。最終的にはやはり専門家の目、勘に頼らざるを得ないのではないか。

最後に、希少猛禽類に関する営巣地の誘導技術は、希少猛禽類の保護の一方策として益々採用されていくものと予想される。しかし、生態系の食物連鎖の上位に位置する猛禽類の誘導は、生態系に及ぼす影響も大きいので、誘導の適否を十分検討した上で実施すべきであると考える。

引用文献

由井正敏・石井信夫(1994)林業と野生鳥獣との共存に向けて、㈱日本林業調査会,東京.

荒川茂樹・中村忠宏・金井次男・桜井良樹・水越利春・村岡政行(2004)自然との共生をめざした自然再生の取組み(オオタカの人工巣).日本鳥学会2004年度大会講演要旨集.

勝亦修(2005)三遠南信自動車道 飯喬道路におけるオオタカの保全対策.日本鳥学会2005 年度大会サテライトミーティング.

波多野幾也(1999)樹上に設置した人工巣へのオオタカの営巣.日本鳥学会誌47:119-200.

第5章 用語の解説

写真 48 滑翔するハイタカ雄(撮影:藤掛幹夫)

滑翔

はばたかずに両翼をまっすぐ横に 伸ばして滑るように、少しずつ降下 していく飛び方。

空中停飛

草原などの平らで開けた場所で、餌動物を捕獲するため、空中で停まっているように見える飛び方。翼をはばたかせながら、尾を下げて広げ、風上にゆっくりと飛ぶと高空で静止した状態が保てる。ノスリの他、チョウゲンボウなどが行う。

行動圏

採餌、休息、営巣などを行う生活範囲。なわばりとは異なる。

ディスプレイ

誇示行動で、繁殖期に関する行動と他への敵意を示す行動がある。繁殖に関する行動(求愛ディスプレイ)には求愛給餌やディスプレイフライトなどがある。波状飛行や鳴き交わしなど。

ディスプレイフライト

求愛やなわばり宣言のために行う、誇示のための飛行。求愛造巣期によく見られる。主にオスメス2羽で行う。波状飛行(翼を広げたりつぼめたりしながら急上昇急降下をくり返し行い、波状を描くように飛ぶ)、旋回飛行(羽ばたいたり、羽ばたかずに翼と尾を広げたりしながら、高空へ上昇する)、V字飛行(両翼を水平よりも上方へ上げてV字型にして飛ぶ)などがある。

波状飛行

繁殖期の2月頃に行う、誇示行動(ディスプレイ)の一つ。翼をつぼめて急降下し、降り

きったところで翼を広げ、その勢いでまた急上昇することをくり返す。オオタカ、ノスリの他イヌワシ、クマタカなどは波状が顕著である。

V字飛行

繁殖期の2月頃に両翼を水平よりも上にそらせV字型にして飛行する誇示行動(ディスプレイ)の一つで、ノスリの他イヌワシ、クマタカなどが行う。ノスリは比較的V字の角度がゆるやかなそらせ方である。

パーチ

樹木や地上、人工物などにとまることをパーチとよび、とまった地点をパーチングポイントとよぶ。オオタカは1日の中で大半をとまって過ごしている。

猛禽類の狩りの仕方には飛びながら餌を見つけて追いかけ襲う方法と、とまっていて餌を見つけてねらいを集中して襲う方法とに分けられる。オオタカは主に木などにとまっていて餌動物を見つけると短距離で攻撃し捕獲する。そのため翼を急激に羽ばたかせるため翼長は短く翼幅は広い。また飛行のコントロールに便利なように尾は長い。

写真 49 枯木にパーチするオオタカ(撮影:内田博)

こうした狩りの仕方から、パーチングポイントを見つけておくのは、餌場の確認上重要である。

今回調査からはオオタカではパーチングポイントは巣から1km以内に約50%、3km以内に約90%があった。ノスリでは巣から500m以内に約60%、1km以内に約約80%があった。このようにパーチングポイントは巣に近いほど多く、オオタカよりもノスリの方が巣の近くでの狩りが多かった。

ペリット

口から吐き出された不消化物のかたまり。 小さな餌を丸のみにするので、羽毛や毛皮、 骨などの不消化物をかためて吐き出す。巣の 直下や周辺で見つかることが多い。

帆翔

はばたかずに翼を広げて高度を上げる飛び 方。上昇気流をつかまえて飛ぶ。

写真 50 帆翔するノスリ(撮影:内田博)

ハンティング

探餌や採餌行動。餌動物を捕獲する狩行動。

幼鳥、若鳥、成鳥

羽色による年齢の見分け方で、生まれた年の換羽していないものは幼鳥とよび、換羽した ものは若鳥とよぶ。オオタカの幼鳥の見分け方は翼の上面(背中側)が暗褐色、体の下面 (腹側)には縦斑があり黄褐色あるいは白っぽく見え、若鳥は成鳥に似ているが体の下面の 縦斑には、よく見ると細かいV字模様が並んでいるように見える。

写真 51 オオタカ幼鳥(撮影:内田博)

成鳥は翼の上面は黒っぽく見え(オスは青みがあり、メスは褐色がかって見える)、体の下面には細かな横斑があり白っぽい。羽色が換羽により見え方が変らないものを成鳥とする。

ノスリの幼鳥は、成鳥に比べ翼上面 の黒さが少なく、尾羽に暗褐色の細 かな横帯がある。目の色は成鳥に比 べ黄色っぽい。

渡り

寒い地方に生息する猛禽類の中には、冬がくる前に、暖かい地方に移動するものがいる。 餌動物の欠乏が主な理由と考えられる。オオタカやノスリは国内で移動する個体がいる。他 種では他国間での移動を行うものが多い。秋と春に渡りを見ることが多い。

国内希少野生動植物種

平成5年に施行された「絶滅の恐れのある野生動植物の種の保存に関する法律」(通称種の保存法)の中に指定された日本国内に生息・生育する動植物種。アホウドリ、ツシマヤマネコ、ベッコウトンボ、アツモリソウなど50種あまりの動植物種が指定されており、それらの保護のために生息地保護区の指定など各種規制が講じられている。

森林施業

狭義には木材生産における植栽、下刈り、間伐、主伐などの林業的な用語であるが、現在 では様々な目的のための森林の取り扱いにも施業という用語が使われることが多い。林業以 外の目的のための施業という用語の中には、上記の作業のほかに、特に必要がない限り手を加えないという扱い方も含まれることがある。広義の「森林施業」は「森林の取り扱い」である。

林分

樹種や上木の大きさなどが同じような樹木の集団で、周りの森林の構造との違いが明らか に識別できるひとまとまりの森林の面的広がりの単位をいう。

里山

農山村に住む人たちの日常生活とかかわりを持つ森林、農耕地、居住地などを含んだ森林を中心としたランドスケープ。ランドスケープとは、一定の広がりを持った地域に含まれる地理的自然や土地利用形態などの要素の集合体のことである。里山林には薪炭林や有機物肥料のための落葉採取を目的とした農用林などが多かった。

立木密度

単位面積当たりの立木本数で、ha当たりの高木層の木の本数で示すのが普通。

林縁

森林が森林以外の植生や裸地などと接する場所をいう。林内は枯れ上がりが進んでいても、 林縁木は外側に地際近くまで枝を張っていたり、潅木やつる植物などが地際を覆ったりして いることが多い。しかし伐採などにより急激に形成された林縁はその限りではない。

森林計画区

広範に広がっている森林を、計画的に取り扱っていくためには、一定の広さに区分して森林計画を樹立していくことが効果的である。そのために区分された計画単位が森林計画区である。

生産目標

普通には木材の質的、量的生産目標をいう。たとえば、材を 立方メートル生産する、 柱材を毎年 立方メートル生産する、無節のヒノキの柱材を毎年 立方メートル生産するなどというように生産目標には色々な内容のものがある。

ハビタット

ある生物種にとって生活、生息しやすい場所のことであり、生息場所のことである。

施業体系

植栽、下刈り、つる切り、間伐、主伐などの諸作業を、森林の管理目標に照らして関連付

けて体系化したものである。木材生産においては、伐り方と更新法には密接な関係があるな ど、諸作業を体系付けることは重要である。

有用天然木・有用広葉樹

ここでいう有用とは、木材の利用価値が高いという意味である。したがって有用天然木とは、天然更新した木で材の利用価値の高い木のことであり、有用広葉樹とは、材の利用価値 の高い広葉樹のことである。

バイオマス

ある面積、時間における生物の集団を構成する生体の全質量。森林バイオマスというと、 普通は単位面積当たりの植物の全生体の乾燥重量のことである。

ギャップ・林冠ギャップ

自然枯損、風、伐採などの攪乱によって上層林冠に孔の生じた空間、およびその後そこに 植生が成長してきた部分のことであるが、その周りの林冠よりも低い部分のことである。

埋土種子

種子が散布された場所の光環境など、発芽環境が悪いと発芽せずに休眠し、攪乱によって環境条件が改善されるまで発芽を待っている種子。埋土種子は光の刺激を受けると発芽する。

立て木

皆伐をしないでまばらに残された高木。価値の高い大径木を財産保持的に残したり、天然 更新のための種子の供給を図る母樹として、また更新樹に適度な日陰を与えたり、微気象を 緩和したりする目的で残されるものである。近年は、鳥散布種子による広葉樹の更新を期待 して、鳥の止まり木としての役割を期待するものもある。

保護樹帯

保残帯とも呼ばれている。昭和48年に国有林野の施業規定として示されたもので、小面積区画皆伐、帯状皆伐などを除いた皆伐の場合、新生林分の保護、土砂の流出の防備、自然景観の維持などのために必要な尾根、渓流沿い、林道の沿線などを主体として設けるものとし、その幅員は、おおむね30㎡(平坦地)~40㎡(傾斜地)以上を基準とすると定めている。

林班・小班

森林全体の中で、地形界、林相界、所有者界などによりそれぞれの部分の所在地を示すために区分した森林計画上の単位。基本的に林班と小班で示され、林班の中に小班があり、小班が最小の区分単位である。

地掻き

自然の種子散布による更新 (天然下種更新)の成績を上げるために、落葉層を掻きとって 地肌を露出させる作業。

被度

ある種類の単位面積当たりの投影面積をパーセントで表わしたもの。階層別に測定するが、同一階層での同じ種類の重なりは一層とみなし、違う種間での重なりは別々に測定する。被度は測定精度が悪いので、百分率を階級に分けて、被度階級として6段階に分けて表されることが多い。

間伐・皆伐・主伐・保育・収穫

間伐と主伐は対語であり、主に皆伐一斉更新施業に使われる用語である。初期の間伐には 保育(間引き)のためだけのものもあるが、それより後のものは収穫と保育をかね合わせた ものであることが普通である。最終の収穫が主伐であり、ある広がりをまとめて伐る主伐が 皆伐である。

伐期齢・標準伐期齢・輪伐期・長伐期・標準伐期・法正林・齢級分布

植栽(更新)から主伐までの年数が伐期齢であり、標準的な伐期齢が標準伐期齢である。 平均成長量が最大になる頃を標準伐期齢というのが普通である。輪伐期は伐期(齢)とほぼ 同じ概念であるが、同じ伐期(齢)で周期的に回転される場合に使われる。長伐期は短伐期 の対語で、一般的には標準伐期よりも長いものを長伐期という。法正林とは、経営管理され ている全森林が、伐期齢までの全ての齢級(5年を一つの齢級とすることが多い)で等しく 構成されている状態をいう。すなわち齢級分布が均等な森林が法正林である。

複層林施業

抜き伐りを繰り返していっても有用樹種が絶えないように更新を図っていく施業であり、 複層林型が維持される施業である。非皆伐施業、択伐林施業とほぼ同じ概念である。複層林 とは複層林施業を行ったものとは限らないことに注意しなければならない。森林は手を加え ないで長い時間がたてば複層林化していくからであり、手の入らない老齢の天然林は一般に 複層林だからである。

列状間伐・定性間伐・群状伐採

列状間伐は、伐採・搬出効率を高めるために、2列残して1列伐るなどというように列状に規則的に間伐する方法である。定性間伐は、1本ごとに形質を見て残す木と伐る木を選木して行う間伐法である。群状伐採は、一辺が高木の樹高の2倍程度以内の面の伐採をいうのが普通である。

幼齢林・若齢林・壮齢林・老齢林

林業的には伐期までの若さ、古さを相対的に示す用語である。たとえば、伐期が50年の場合は、10年生ぐらいまでが幼齢林、35年生ぐらいまでが若齢林、それ以上が壮齢林というように呼ばれても、伐期が100年の場合は、15年生ぐらいまでが幼齢林、50年生ぐらいまでが若齢林、それ以上は壮齢林と呼ばれたりする。

それに対して生態的には、大きな攪乱のあった後、大規模ないし中規模の攪乱がない状態が長く続いた場合において、高木性の樹種が林冠を形成するまでは幼齢林、高木性の樹種が林冠を強く閉鎖して下層植生が目立って乏しくなる段階の森林を若齢林、樹冠同士の間に隙間ができて下層植生が豊かになる段階の森林を壮齢林、それまで上層を占めていた優勢木の中で、衰退木、立枯れ木、倒木が出現して以降の段階の森林を老齢林という。この場合、若齢林は10~15年生から40~50年生、壮齢林は50年生から100数十年生ぐらいまでであることが多い。

林縁種・林内種・森林依存種

動植物の両方に使われる。林縁種は林縁を好む種のことであり、植物ではコウヤボウキ、多くのスゲ類、キブシなど、動物ではキジやタヌキなどがそれに当たる。林内種は植物では、リュウノヒゲやイノデなど耐陰性の高い植物種であり、動物ではまとまった森林の広がりを必要とするツキノワグマ、クマタカなどがそれに相当する。森林依存種は、林縁種・林内種を合わせたもので、森林を主な生育・生息場所としている生物種である。

地位指数・地位1等、2等

地位とは、林地の生産力を示す級区分の概念である。樹種ごと、地域ごとに一斉林のある 林齢の上層木の樹高を指標にして地位を示している。日本では40年生の樹高を指標にする ことが多い。それぞれの地域、樹種ごとに収穫表が作られ、そこで等級区分した地位を高い 順に1等、2等、3等、または上、中、下と区分している。

収量比数・密度管理図

密度管理図は、横軸にヘクタール当たりの本数、縦軸にヘクタール当たりの材積を取り、 生育(樹高)段階ごとの密度と材積の関係を対数軸上に示した図である。この図の上には、 生育段階ごとの最多密度を結んだ最多密度線と、それに対して相対的な込み方の度合いを示 す収量比数線や自然間引き線などが描かれ、それらお互いの関係を求めることができる。収 量比数は最多密度を1として、それに対する実際の密度を0.9、0.8などという比数で表現す るものである。

機能類型・水土保全林・森林と人との共生林・資源の循環利用林

1998年につくられた国有林野の森林経営基本計画において、「水土保全林」、「森林と人との共生林」、「資源の循環利用林」の3つの機能類型区分が行われ、その区分は2001年に

作られた森林・林業基本計画においても用いられているものである。そしてそれらの基になっているのは保安林制度の17の保安林の種類であり、機能類型は保安林の種類と密接である。そのために3機能の森林の区分基準は明確ではない。たとえば、その呼び名から「資源の循環利用林」が木材生産を第一の目的とする森林と思われるが、「水土保全林」から最も多くの木材が生産される計画になっていることや、両者の目標とする森林の姿に違いが見られないこと、「森と人との共生林」の目標とする姿が保安林の種類に類似する異質のものが並べてあって、共通した姿が見えないことなどである。

人工林・天然林・天然更新・天然下種更新

造林学的な分類では、人工林は苗木を植栽したか、種子を播いたかによって成立した森林である。天然林は、天然更新によって成立し、間伐などの手入れのなされていない森林である。天然更新とは自然に散布された種子から芽生えたり、萌芽更新したり、伏条更新などにより更新したものをいう。天然下種更新は、天然更新の中で種子からの芽生えによって更新したものをいう。なお、天然更新したが、人為の加わっている森林を天然生林という。

仕立て方法、中仕立て、間伐率、単木中庸間伐

仕立て方法という用語は、密度に関する植栽方法において使われている。疎植を疎仕立て、 密植を密仕立てといい、その中間を中仕立てと呼んでいる。間伐率は、間伐前の本数のうち 何パーセントを間伐したか、あるいは林分材積のうち何パーセントを間伐したかを示すもの である。単木中庸間伐は、定性間伐で1本ごとに選木した、強度が中庸の間伐のことである。

枝下高、胸高直径、林冠、樹冠

枝下高は樹冠の最も下の枝(生枝)の高さである。胸高直径は、人の胸の高さの直径で、 日本では120cmが普通であるが、欧米では130cmの場合が多い。樹冠は樹木の枝と葉が 展開している部分であり、林冠は樹冠が横方向に接して連なっている状態のものをいう。

参考文献

左端に脚注番号のあるものは、本文に引用したものである。

- 66 安藤 貴 (1982) 林分の密度管理. 農林出版. 126pp
- 67 荒上和利・汰木達郎 (1988) 列状間伐による複層林の形成に関する研究.九州大学農学部演習林報告 58:1-15
 - 荒川茂樹・中村忠宏・金井次男・桜井良樹・水越利春・村岡政行 (2004)自然との共生をめざした自然再生の取組み(オオタカの人工巣).日本鳥学会2004年度大会講演要旨集.
- 39 Artman, V.L. (2002) E ects of commercial thinning on breeding bird populations in Western Hemlock forests. The American Midland Naturalist 149-1:225-232.
- 19 Brown L. (1976) British birds of prey. Colins.
- 62 Canham C.D(1988)An index for understory light levels in and around canopy gaps. Ecology 69: 1634 ~ 1638
- 18 遠藤孝一(2004)秋冬期のオオタカの行動を追う.オオタカ通信5:3-6.
- 30 遠藤孝一・野中純(2003)栃木県那須野ヶ原のオオタカの生息環境と地域環境計画(案).Goshawk vol.4 (オオタカ保護シンポジウム要旨集:第1回 第10回):91-92
- 50 遠藤孝一・若杉 集・高松健比古・中山正匡(1987)那須野ヶ原におけるオオタカの繁殖生態(日本鳥学会大会講演要旨).日本鳥学会誌36:111
- 12 榎本佳樹(1938,1941)野鳥便覧.上・下.日本野鳥の会大阪支部.
- Finn S.P.(2002)Does Northern Goshawk breeding occupancy vary with nest-stand characteristics on the Olympic Peninsula, Washington? J. of Raptor Research 36-4:265-279.
- 38 藤巻裕蔵(1986)北海道南部の落葉広葉樹林における繁殖期の鳥類群集(英文).日本鳥学会誌 35-1:15-23.
- 95 藤森隆郎 (2006) 長伐期施業の意義と課題.全国林業普及協会編「長伐期林を解き明かす」.12-32 藤森隆郎 (2003) 新たな森林管理.全国林業改良普及協会.428pp
- 91 藤森隆郎 (2000) 森との共生 持続可能な社会のために.丸善.236pp
- 42 藤森隆郎・由井正敏・石井信夫編(1999)「森林における野生生物の保護管理」.日本林業調査会. 255pp.(改訂版2006発刊予定)
- 80 Fujimori, T., Utsugi, G. and Ishizuka, M. (1995) Growth of Sugi cedar and Hinoki cypress planted in several types of forest stands. Journal of the Japanese Forestry Society 77: 297-304
 - 藤森隆郎(編)(1992)複層林マニュアル施業と経営.全国林業改良普及協会.119pp.
- 96 藤森隆郎(1991)多様な森林施業.全国林業改良普及協会.191pp.
- 20 Geer T.A. (1978) E ects of nesting Sparrowhawks on nesting tits. Condor 80:419-422.
- 47 Gregory D.Hayward and Ronald E.Escano (1989) Goshawk nest-site characteristics in western Montana and northern Idaho. The Condor 91:476-479.
- 40 Hagar et al. (2004) Short-term response of songbirds to experimental thinning of young Douglas-fir forests in the Oregon Cascades. Forest Ecology and Management 199: 333-347.
- 46 Hall, P. A. (1984) Characterization of nesting habitat of goshawks (*Accipiter gentilis*) in northwestern California. M.S.thesis, California State University, Humboldt. 70pp
- 98 Harris, L.D. (1984) The fragmented forest. The Umiversity of Chicago Press. 127-144.
 - 波多野幾也 (1999)樹上に設置した人工巣へのオオタカの営巣.日本鳥学会誌47:119-200.
- 25 樋口広芳ほか (1982) 森林面積と鳥の種数との関係。Strix 1:70-78.

- 56 平山嵩 (1948) 建築設計理論. 東京. 368-379
- 78 石塚森吉・金沢洋一(1989)針広混交林におけるエゾマツ・シナノキ・イタヤカエデ樹冠下のトドマツの成長過程 日本林学会誌71:281-287
- 41 井上牧雄 (1990) 落葉広葉樹林の繁殖鳥類群集に対する伐採の影響.鳥取県林業試験場研究報告 33:39-57
- 59 井鷺祐司・加茂浩一(1990)ヒノキ壮齢林の群状伐区内における立体的光環境.41回関西林支講
- 61 石塚森吉・上村 章・宇津木玄・飯田滋生(2007)カラマツ人工林列(帯)状伐採地における散光透過率の推定法.日林北支論 55:29-31
- 92 石塚森吉(2006)国補大型プロジェクトを総括する.「長伐期林を解き明かす」(全林協編).58-67.全国 林業改良普及協会
- 60 Ishizuka, M., Ochiai, Y. and Utsugi, G. (2002) Micro-environment and growth in gaps. Ecological Studies. 158: 229-244
- 79 石塚森吉・川崎達郎・宇都木玄(2000)光環境管理から見た針葉樹人工林に広葉樹を導入する施業方法の検討、平成11年度森林総合研究所成果選集、16-17
- 70 石塚森吉 (1997) 人工林等の管理.「オオタカの営巣地における森林施業」(前橋営林局編).日本林業技術協会.東京.53-75

石塚森吉(1994)針広混交林の施業.「広葉樹林施業」(藤森隆郎・河原輝彦 編著).全国林業改良普及協会.東京.pp37-56

石塚森吉・金沢洋一(1994)模型林分による林内光環境のシミュレーション.第105回日本林学会大会講演要旨集.469p

- 81 石塚森吉・菅原セツ子・金沢洋一 (1989) エゾマツ・トドマツ・シナノキ・イタヤカエデ混交林における 林木と樹冠の空間配置 日本林学会誌71:127-136
- 76 石塚森吉・管原セツ子・鮫島惇一郎(1985)ミズナラの樹形と成長経過.北方林業37:98-100

Ishizuka, M. (1984) Spatial pattern of trees and their crowns in natural mixed forests. Journal of Japanese Ecology 34:421 430.

- 82 糸屋吉彦・岡本守・杉山正幸・石塚森吉 (2005) ヒノキ人工林の二段林誘導試験 下木の成長経過 . 56回 日林関東支論 147-148
- 86 Kanazawa, Y., Kiyono, Y. and Fujimori, T. (1985) Crown development and stem growth in relation to stand density in even-aged pure stans () Clear length model of Cryptomeria japonica stands as a function of stand density and tree height. J. Jpn. For. Soc. 67:391-397
- 9 関東森林管理局(2005)森林の管理経営の指針 国民の期待に応える管理経営を目指して -
- 21 関東森林管理局 (2004) 餌動物の調査.オオタカ等国内希少猛禽類の保護と水源森林総合整備事業等との共生に関する調査報告書 平成16年3月.42~97
- 94 勝 善鋼(1971) ヒノキの根株芯腐病. 森林防疫231:141-146

勝亦 修 (2005)三遠南信自動車道 飯喬道路におけるオオタカの保全対策.日本鳥学会2005年度大会サテライトミーティング.

77 河原輝彦(1988)複層林誘導のための林内照度のコントロール. 森林立地 30:

川原輝彦(2001)多様な森林の育成と管理 東京農大出版会

- 8 Kenward, R.E. (1987) Wildlife radio tagging:equipment, field techniques and data analysis. Academic Press, London, England.
- 7 Kenward, R.E. (1985) Raptor Radio-Tracking and Telemetry. In:Newton I & Chancellor RD (eds) Conservation Studies on Raptors. ICBP Technical Publication No.5

- 17 Kenward, R.E. (1982) Goshawk hunting behaviour, and range size as a function of food and habitat availability. J. of Animal Ecology 47:449-460.
- 63 清野嘉之・五十嵐哲也(2002)長伐期林と下層植物群落.「長伐期林の実際 その効果と取扱技術(わかり やすい林業研究解説シリーズ No. 110)」(桜井尚武編). 林業科学振興所. 東京
- 44 小島幸彦 (1992) 新潟県魚沼地方において岸壁営巣するノスリ Buteo buteo の営巣環境 Strix 11:91-98
- 55 小島 正・石塚森吉 (2004) 二段林の光環境. 森林科学41:21-27
- 74 小島 正・石塚森吉 (1999) カラマツ林人工ギャップの光環境と植栽した苗木の成長について.第110回日本林学会大会学術講演集 47-48
- 73 小島 正・石塚森吉 (1999) スギ林人工ギャップの光環境と植栽した苗木の成長について.日本林学会論文 集 第109号.297-298
- 54 小島 正・石塚森吉 (1999) 林冠ギャップの光環境管理図 人工林内への広葉樹導入のために .50回日林関東支論 .61-64
- 72 小島 正・石塚森吉(1998) スギ人工林につくった人工ギャップの光環境と植栽したケヤキ・コナラの生長について、49回日林関東支論、37-38
- 84 Kudo, T., Ozaki, K., Takao, G., Sakai, T., Yonekawa, H., Ikeda, K. (2005) Landscape analysis of northern goshawk breeding home range in northern Japan. Journal of Wildlife Management 69:1229-1239
- 83 工藤琢磨(2005)オオタカと森林施業.山林 1457:38-41
- 43 工藤琢磨・尾崎研一・鷹尾元・酒井智丈 (2003) オオタカはなぜ農耕地帯に生息できるのか? 日本鳥学会 2003年度大会講演要旨集
- 93 黒田吉雄・勝屋敬三(1995)カラマツ根株心腐病菌の林床での分布.日本林学会誌 77:39-46
- 27 黒沢令子ほか (1996) 林縁と林内の鳥類群集の違い:日本に林内種はいるか? (英文).山階鳥研報31-2:63-78.
- 11 関山房兵 (1993) オオタカ Accipiter gentilis の育雛期における食性 岩手県立博物館研究報告11.
- 68 桑原康成 (2003) 2 回目の列状間伐実施時期の検討 列状間伐後 5 年経過した樹冠のうっ閉度と立木成長 . 九州森林研究 56:198-199
- 69 桑原康成(2001)育林技術に関する研究.佐賀県林業試験場業務報告書 平成12年度.5-7
- 16 清棲幸保(1965)日本鳥類大図鑑.講談社.
- 35 Long, J.N. and F.W.Smith (2000) Restructuring the forest: Goshawks and the restoration of southwestern ponderosa pine. J. of Forestry: August 25-30.
- 36 前橋営林局編(1998)オオタカの営巣地における森林施業.日本林業技術協会.
 - Matthews, J.D. (1988) Silvicultural systems. Oxford Science Publications, Oxford, 284pp.
- 57 Monsi,M. and Oshima, Y. (1955) A theoretical analysis of the succession process of plant community, based upon the production of matter. Jap.Journ.Bot.15:60-82
- 2 森岡照明・叶内拓哉・川田隆・山形則男(1995)図鑑日本のワシタカ類.文一総合出版
- 87 森田栄一(1982)林況診断表の作成()-九州地方ヒノキ林における樹冠長比-.日林九州支研論集35: 31-32
- 90 Nagaike, T., Hayashi A. (2004) E ect of extending rotation period on plant species diversity in Larix kaemferi plantations in central Japan. Ann. For. Sci. 61: 197-202

- 15 Nagy K.A. (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs 57 (2):111-128.
- 26 中津 弘ほか (2004) ラインセンサスを通してみた京阪奈丘陵の鳥類と里地・里山の景観構造との関係.ランドスケープ研究67-5:487-490.
- 58 Nakashizuka, T. (1985) Di used light condition in canopy gaps in beech (Fagus crenata Blume) forest. Oecologia 66:
- 1 日本鳥学会(2000)日本産鳥類目録改訂第6版.
- 10 尾崎研一・工藤琢磨ほか(2004)アンブレラ種であるオオタカを指標とした生物多様性モニタリング手法の 開発に関する研究.「平成14年度自然環境の管理及び保全に資するための研究」.環境省.24-1~36.
- 51 Penteriani V.and Faivre B. (1997) Breeding density and nest site selection in a Goshawk Accipiter gentilis population of the Central Apennines (Abruzzo, Italy). Bird Study 44: 136-145
- 97 Perry, D.A. (1994) Forest ecosystems. The John Hopkins University Press. Baltimore and London. 649pp.
- 31 Petty S.J. (1989) Goshawks: their status, requirements and management. Forestry Commission
- 32 Reynolds R.T.ほか (1992) Management recommendations for the Northern Goshawk in the Southwestern United States.USDA Forest Service.JTRM-217.
- 89 林野庁(2005)長期育成循環施業に対応する森林管理技術の開発(大型プロジェクト研究成果). 林野庁. 160pp.
- 53 林野庁(1996)複層林の造成管理技術の開発(大型プロ研究成果9). 林野庁. 156pp
- 85 林野庁(1995)複層林の造成管理技術の開発. 林野庁. 156pp.
- 48 Robert Speiser and Thomas Bosakowski (1987) Nest site selection by Northern Goshawks in northern New Jersey and southeastern New York. The Condor 89:387-394.
- 33 Sanchez-Zapata J. and J.Calvo (1999) Raptor distribution in relation to landscape composition in semi-arid Mediterranean habitats. J. of Applied Ecology 36:254-262.
- 13 環境庁(1996)「猛禽類保護の進め方」日本鳥類保護連盟
- 49 SHUSTER, W.C. (1980) Northern goshawk nest site requirements in the Colorado Rockies. Western Birds 11:89-96.
- 52 鈴木貴志 (1999) 北海道十勝平野におけるオオタカ Accipiter gentilis の営巣環境. 日本鳥学会48: 135-144
- 71 高野 繁・五十嵐哲也・伊藤武治・田内裕之・落合幸仁・石塚森吉 (2005) 人工林内の光環境と植栽した広葉樹下木の反応.第56回日本林学会関東支部大会発表論文集.(119-120)
- 24 竹内 亨(2002)分断化した生息環境における森林性鳥類の景観生態学(英文).九州大学博士論文.
- 64 垰田 宏(1992)複層林施業の基礎条件.藤森隆郎(編)「複層林マニュアル施業と経営」.32-40.全国 林業改良普及協会
- 65 上田恵介(編著)(1999)種子散布(助け合いの進化論1)鳥が運ぶ種子.築地書館.東京.109pp
- 29 浦本昌紀(1964)「野生鳥類の生活環境に関する研究」農林水産業特別試験研究費補助金による研究報告書. 山階鳥研.
- 14 Walsberg G.E. (1980) Energy expenditure in free-living birds: pattern and diversity. Acta Cong.Intern.Ornithol.Berlin:300-305.
- 23 山浦悠一・由井正敏 (2002) 林道と林内でバードウォッチングの効率に違いはあるのか? 東北森林科学会誌 7-1:12-19.
- 22 山浦悠一・由井正敏 (2001) 都市近郊林におけるバードウォッチングポイントの定量的解析.岩手大学農学部 演習林報告 32:49-59.

- 75 山口清・横井秀一(1993)間伐した広葉樹林の下層に植栽された広葉樹の成長.41回日本林学会中部支部論 文集.81-84
- 45 米川 洋・川辺百樹・岩見恭子(1995)十勝地方平野部におけるノスリ Buteo buteo の繁殖生態と繁殖個体群の減少要因. ひがし大雪博物館研究報告 17:1-14
- 28 由井正敏・東條一史(2000)生物多様性指標としての森林鳥類群集.第111回日林学術講.448.
- 88 由井正敏・石井信夫 (1994) 林業と野生鳥獣との共存に向けて 森林性鳥獣の生息環境保護管理 . 279pp. 日本林業調査会.東京
- 6 由井正敏・鈴木祥悟・青山一郎 (1989) 森林原野性鳥類のラインセンサス法の研究 プロットセンサス法との比較、山階鳥類研究所研究報告21:208-223.
- 5 由井正敏 (1988) 森に棲む野鳥の生態学. 創文. 237pp
- 4 由井正敏 (1977) 野鳥の数のしらべ方.わかりやすい林業研究解説シリーズ60.日本林業技術協会.65pp
- 3 由井正敏(1974)繁殖期における小鳥類の生息数調査法に関する研究. 林試験報264:13-84
- 37 由井正敏ほか(1969)「食虫性鳥類の誘致増殖」.昭和43年度国有林野事業特別会計林業試験成績報告書. 林業試験場.