

航空機 LiDAR データを使った 地位指数分布図の 作成の手引き

2022 年 3 月 林野庁

目次

1. はじめに1
2. 地位と地位指数について3
地位と地位指数とは?3
地位指数の計算方法4
3. 航空機 LiDAR による森林計測6
航空機 LiDAR のしくみ6
航空機 LiDAR 計測データ活用にあたっての留意点8
コラム : 照射点密度 1 点/m ² のデータはどの程度 「使える」?8
全国の航空機 LiDAR 計測データ整備状況と利用方法 10
アーカイブデータの入手先11
航空 LiDAR 計測でよく使われる用語13
新規計測時に留意すべき事項14
4. 地位指数分布図作成の前提条件16
条件16
作業環境16
5. 地位指数分布図作成のながれ17
各分布図の作成のながれ18
(1)格納ポリゴン:20m 四方のメッシュ18
(2)上層木平均樹高の計算・分布図作成の方法19
(3) 樹種・林齢分布図の作成20
(4)地位指数曲線・分布図の作成21
6. 準備22
データの準備22
7. 作業1:対象エリアの20mメッシュの準備 29

8.	作業2:DCHM から 上層木平均樹高 計算	を 34
QG	IS での作業	. 34
9.	作業 3 : DTM 画像と DSM 画像から DCHM を作成	40
QG	IS での作業	.40
10	.作業4:TIF画像に変換	45
QG	IS での作業	.45
11	. 作業 5 : 樹種と林齢の 20m メッシュ化	46
QG	IS での作業	.46
12	. 作業 6 : 地位指数曲線作成のためのサン リング	プ 55
QG	IS での作業	. 55
13	. 作業 7 : 樹高成長曲線のあてはめ	57
Mic	rosoft Excel での作業	. 57
14	. 作業 8 : 地位指数分布図の作成	64
QG	IS での作業	. 64
15	.活用 森林簿ポリゴンに情報を付与	70
QG	IS での作業	. 70
16	. 留意事項	75
17	. 事例紹介	77
徳島	景県	. 77
新潟	得!	. 78
茨坊	成県	. 79
18	. 引用文献	80

1. はじめに

■ この手引きのねらい

- ✓ この手引きは、近年各都道府県において整備が進んでいる航空機 LiDAR 計測データを用い、高精細かつ高精度な地位指数情報を得ることを目的として作成されたものです。
- ✓ 想定するユーザーは主として都道府県の森林計画担当者で、自らデータを 加工して地位指数情報を得るための手法、あるいは作業を外注する上での 留意事項等をまとめています。

背景

近年、持続可能な社会の実現が強く求められるなか、再生可能な生物資源である人工林を適切に管理していくことの重要性がますます高まっている状況にあります。令和3年6月に閣議決定された森林・林業基本計画においては、人工林資源の循環利用を推進しつつ、多様で健全な姿へと誘導していくこととしています。

とくに、主伐再造林を進めていくうえで、市町村森林整備計画における「木材生産機能維持増進森林」 を適切にゾーニングすることが重要であり、そのためには林地の生産力に関する情報が不可欠となっていま す。

林地の生産力を示す指標としては、ある林齢における主林木平均樹高など、「樹高」が尺度として用いられています。これは、直径の成長と比較して樹高の成長が本数密度の影響を受けにくいという性質に基づいています。特に、ある基準林齢における樹高として表現される「地位指数」は、上・中・下等の相対的な表現で示される「地位」とは異なり、絶対的な評価基準として利用可能なもので、地位級(伐期平均成長量)等の基準情報ともなります。

現在、都道府県の森林簿で実際に適用されている地位や地位指数の情報は、市町村や流域単位など かなりマクロな空間スケールに対して適用されているものが多く、上記のような木材生産機能維持増進森 林などのゾーニングに必要な情報として十分ではないと考えられます。

森林情報の高精度・高精細化に向けた航空機 LiDAR データの活用

都道府県では、航空機等より得られるレーザ計測データ(航空機 LiDAR データ)の整備が近年進ん でいます。航空機 LiDAR データから、詳細な地表面の高さデータ(DTM)と森林の表層の高さデータ (DSM)を作成し、両者の差分を取ることによって林冠の高さデータ(DCHM)を得ることが可能で す。DCHM は、主林木平均樹高や上層樹高を直接示すものではありませんが、両者には強い正の相関 があると考えられることから、簡易な補正により DCHM から主林木平均樹高等を推定することが可能と 考えられます。

航空機 LiDAR データから得られる森林の高さデータから、局所的な林地生産力の情報を取得し、これ を用いることによって、森林簿情報の精度向上が期待でき、木材生産機能維持増進森林などのゾーニン グも適切に実施可能となります。また、施業林分単位での資源量が把握できることから、森林所有者や 事業者に向けた材価の見積等に必要な情報等を提供することも可能になると考えられます。

このように航空機 LiDAR データの活用は、森林資源情報の飛躍的な高精度・高精細化をもたらし、将 来的に森林政策や森林計画の戦略的な意思決定に寄与するとともに、持続可能な森林管理に大きく 貢献することが期待できます。

手引きの使い方

主に都道府県の森林計画を担当される方が利用することを想定して作成されています。GIS ソフトや Excel の使用に慣れている方であれば、入手した航空機 LiDAR データをもとに自ら地位指数マップを作 成できます。

各都道府県に納品されている航空機 LiDAR データは様々であると考えられますので、データの状態によってどのような処理が必要か、フローチャートに基づいて判断できるようになっています。自ら作業を行うことが困難な方においては、地位指数マップ作成作業を外部発注する際の仕様書としても活用いただけます。

また、現在利用可能な LiDAR データが無い方においては、どのような仕様により航空機 LiDAR データを 取得すべきか、納品成果物としてどのようなデータが必要か検討いただけるようになっています。

手引きの構成

この手引きは以下の構成になっています。

・航空機 LiDAR データから森林の高さ情報を取得する仕組み

・地位指数マップの作成に必要な要件

- ・地位指数マップ作成のながれ
- ・QGIS による LiDAR データの処理
- ・Excel による成長モデルのあてはめ
- ・QGIS による地位指数マップの作成

·事例紹介

本手引きは、林野庁事業の「リモートセンシング技術等を用いた森林の機能別調査の手法に関する調査事業」(令和3年度)の成果として作成したものです。

2. 地位と地位指数について

地位と地位指数とは?

地位ないし地位指数とは、土地の生産力を表す指標として用いられます。生産力の尺度としては、本来はその土地から得られる木材の量、すなわち ha 当たりの材積が用いられることが望ましいですが、材積の正確な計測は難しく、林分構造や仕立て方などの森林の管理状況の影響を受けやすいという問題があります。直径や立木密度も同様です。一方、樹高成長は立木密度の影響をほとんど受けないという特徴があり、この性質を用いて地位や地位指数の査定に樹高(とくに上層樹高)が用いられます。

「地位」の場合は、やせた土地から肥沃な土地を例えば地位1(高い)~5(低い)といった区分や、地位上/中/下などの相対的な区分で表されます。一方、「地位指数」の場合は、ある基準となる林齢(スギとヒノキ林であれば林齢40年時)の上層木平均樹高を指標(絶対的な評価基準)として表されます。

地位指数の計算方法

一般的に、基準となる林齢(スギ・ヒノキでは林齢 40 年)における上層木平均樹高を整数値に丸 めたものが地位指数として用いられます。

樹齢が40年でない場合は、成長曲線式にあてはめて地位指数を推定します。同じ土地であっても、 樹種が異なる場合は地位指数曲線は別個に作成する必要があります。同じ土地でも樹種によって成 長の傾向が異なるからです。

式の形

上層木平均樹高の成長曲線(以下、地位指数曲線と呼ぶ)は、シグモイド型と呼ばれる曲線をあてはめます。シグモイド型とは、S字型の曲線です。林齢と樹高で考えると、緩やかな初期成長ののちに、急激に増加し、老齢になると上限に近くなり成長は再び緩やかになります。それを曲線で表そうとすると下図のようにS字形なります。

主な成長曲線式

地位指数曲線にあてはめる成長曲線式としては以下の3つが主に用いられます。

- ゴンペルツ式 : 上層木平均樹高 = K × A ^{exp (-B×林齢)}
- ミッチャーリッヒ式:上層木平均樹高=K×(1-A×exp(-B×林齢))
- リチャーズ式 :上層木平均樹高=K×(1-exp(-A×林齢))^B

K, A, B:係数

従来は現地調査で林齢と上層木平均樹高のデータを入手し、成長曲線に当てはめます。どの式を使うかは、決定係数や RMSE、AIC 等の精度指標を比較して判断します。

ガイドカーブとそこから作成する地位指数曲線

現地調査で得た林齢と樹高のデータから、まずデータの中心を通る「ガイドカーブ」を作成します。このガ イドカーブを用いて、ある場所における林齢と樹高の情報を基にその場所における地位指数を決定しま す。

成長曲線の係数のうち、AとBについては地域・樹種ごとに固定してよいと考えられており、その場所に おける林齢と樹高の値が与えられればKの値が変化し、地位指数曲線が上下に変化します。このよう にして、各場所における林齢と樹高の関係から地位指数を決定していきます。ただし、このためには地 位指数を評価したいすべての場所から林齢と樹高のデータを取得する必要があり、現地調査において これをくまなく把握することは現実的ではありません。

従来は、このような直接的に地位指数を決定する方法ではなく、生産力に影響を与えると思われる気象や地質、地形、土壌などの環境要因から、多変量解析などの統計的な方法を用いて地位指数を 算定する方法が採用されてきました。手法としては、数量化 I 類という手法を用いるスコア表法、地形 因子(有効起伏量、露出度、斜面形、堆積区分等)から算出する竹下法、などがあります。

近年普及が進んでいる航空機 LiDAR 計測データにより、森林の高さデータ(≒樹高)を高精度、高 解像度で取得できるようになってきたことから、ガイドカーブ法による地位指数査定に活用できることが期 待されています。またそれを地図化することで、林地の潜在的な生産性を視覚化することも可能にな り、戦略的な森林計画の策定に寄与することが期待できます。

参考資料: [田中, 2019]

3. 航空機 LIDAR による森林計測

航空機 LiDAR のしくみ

LiDAR (Light Detection and Ranging) とは、レーザスキャナからレーザ光線を計測したい対象 に照射し、反射して戻ってくる時間をもとに対象までの距離を計測するとともに、GNSS(GPS や GRONASS など)受信機、IMU (Inertial Measurement Unit: 慣性計測装置) といった計測 者の正確な位置情報を取得できる機器を組み合わせることによって、計測したい対象の 3 次元空間 中での位置をきわめて高精度に得ることを可能とする光学的リモートセンシング手法です。

航空機 LiDAR 計測は、航空機(固定翼ないし回転翼)にこれらの計測機器を搭載し、上空から 地表面に対してレーザパルスを照射し、地盤ないし地表にある樹木等の地物から反射するレーザ反射 を取得し、同時に取得する航空機の位置情報をもとに地盤面や地物の3次元位置情報を得る技術 です。

https://proceedings.esri.com/library/userconf/proc01/professional/papers/pap214/p214.htm 航空 LiDAR 計測のイメージ

航空 LiDAR 計測で得られる3次元点群データのイメージ

航空 LiDAR 計測データによる地表面からの反射点群データのうち、地盤から反射されたデータをつな ぎ合わせて地盤標高データ(DTM, digital terrain model)を、植生や建物なども含む地表物か ら反射された点をつなぎ合わせて表層標高データ(DSM, digital surface model)を作成できま す。DSM から DTM を差し引くことによって地表物の高さが算出できます。特に森林エリアでは地表物 高を林冠高(DCHM, digital canopy height model)と呼び、森林資源量の把握等に利用す ることが可能です。

DCHMは、主林木平均樹高や上層樹高を直接示すものではありませんが、両者には強い正の相関があると考えられることから、簡易な補正により DCHM から主林木平均樹高等を推定することが可能です。そのほか、単木の樹高、樹頂点位置、立木本数、樹冠サイズ等も推定可能で、レーザ光の反射特性から樹種の判定も可能になってきました。

航空機 LiDAR 計測データ活用にあたっての留意点

航空機 LiDAR 計測データの仕様の違い

我が国において航空機 LiDAR データが本格的に取得されるようになったのは 1990 年代後半と最近のことであり、またこの間、照射点密度の飛躍的な増加や反射強度分布(ウェーブフォーム)の記録が可能になるなど様々な技術的な進展が見られます。このようなことから、現在都道府県で利用可能な航空機 LiDAR 計測データには様々な仕様(スペック)のものがみられます。

現在、国土交通省が管轄する計測の場合、LiDAR 照射点密度が1点/m²となっている場合が多く みられます。

森林域の場合、「高精度な森林情報の整備・活用のためのリモートセンシング技術やその利用方法等 に関する手引き」(林野庁, 2018 年)によれば、計測密度が 4 点/㎡以上であれば単木解析によ る材積推定、1 点/㎡以上であれば、エリアベース解析による材積推定と記載があります。また、森林 環境保全整備事業実施要領のうち路網の整備に関する仕様に点密度を 4 点/m²以上という記載 が見られます。

近年はレーザスキャナの性能が飛躍的に向上し、10点/m²以上のより高密度なレーザ計測も実施されています。

レーザデータの仕様は、計測時点の機器の性能、利用目的や予算(コスト)によって様々なものがありますので、既存のアーカイブデータを利用する場合には、注意が必要です。

コラム:照射点密度1点/m²のデータはどの程度「使える」?

照射点密度の比較

現在のところ、航空 LiDAR 計測の整備状況は、各都道府県によって異なります。照射点密度 4 点/m²のデ ータが整備されていない場合、1 点/m²のデータから実用に耐えるような地位指数の計算が可能であれば、既 存のアーカイブデータを有効に活用することができます。

点密度 10 点/m²をから作成した上層貴樹高データを真値と仮定し、点密度 1 点/m²と4 点/m²のデータからそれぞれ推定した上層木平均樹高を比較してみました。1 点/m²のデータから作成した上層木樹高でも平均 ±0.7m の差分で推定できていることから、上層木平均樹高の推定は 1 点/m²でも十分可能という結果となり ました。

照射点密度1点/m2を利用する場合の注意点

まず点密度が違えば、見た目にどのような違いが生じるのかを下図に示しました。 微地形を見てみると、 点密度が 10点、4点/m²までは林道ややせ尾根が視認できますが、1点/m²になると分かり難くなっています。

注) 10 点/m²の LiDAR データをもとに 4 点、1 点に間引いて作成

この微地形による影響のイメージを下図で説明します。前提として、一般的に照射点密度が高ければ地盤面に 到達するデータ(グランドデータ)を十分得ることができ、照射点密度が低ければグランドデータが少なくなりま す。十分にグランドデータがあれば、地形はより正確(高精度・高精細)に再現されます。一方、データが少な い場合、とくに尾根や谷部のような地形の変曲点でグランドデータが取れていなければ、地形がうまく再現できま せん。そのため、尾根や谷部での上層木樹高の推定精度が低くなると考えられます。一方、一様な斜面ではそ の影響は少ないと考えられます。

航空 LiDAR 計測の整備状況は、各都道府県によって異なります。4 点/m²がまだ十分に整備されていない 場合、1 点/m²でも地位指数を計算できれば、LiDAR データをより広い範囲で活用できます。1 点/m²で林 分の地位指数は推定可能ですが、地形が急に変わる箇所(例えばやせ尾根や V 字谷)では DTM の再現 がうまくできない場合があり、このような場所では、LiDAR の DCHM に誤差が生じやすいということに留意してくだ さい。

全国の航空機 LiDAR 計測データ整備状況と利用方法

解析を行いたい対象エリアにおいて、自ら取得した航空機 LiDAR 計測データを有していない場合、既存のアーカイブデータを確認し、条件に見合うデータがあれば所定の手続きを経ることによって利用する ことが可能です。

我が国における航空レーザ計測の実施状況(2002 年から 2020 年) 出典: (公財)日本測量調査技術協会 空中計測マッピング部会レーザWG

全国の航空機 LiDAR 計測データは、公益財団法人日本測量調査技術協会の「航空測量データポータルサイト」で閲覧・検索することができます。検索画面で対象エリアと観測日、管理者や作業会社を入力します。

国や都道府県が計測を行った公共測量のデータはオープンになっていて、国土地理院のワンストップサ ービスを利用して入手することが可能です。対象エリア、観測日、管理者などの情報に基づいて無償利 用できるか確認し、手順に従って申請します。

出典: 公益財団法人日本測量調查技術協会 https://sokugikyo.or.jp/laser/

アーカイブデータの入手先

■ 国土地理院窓口:応用地理部

「航空レーザ計測成果の利用申請」を入手後、データ範囲図(参考1を参照)とあわせて送付 (2022.1.31 現在)

■ 各都道府県:担当窓口

航空 LiDAR 計測でよく使われる用語

用語	略語	解説
Light Detection And Ranging	LiDAR	航空機や車両などに搭載したレーザ測距計 で対象物までの距離を計測する。 航空機搭載の場合、GNSS(GPSなどの位 置計測システム)で機体の3次元位置を計 測、IMU(Inertial Measurement Unit:)で機 体の傾きを計測することで、航空機と対象 物までの距離を精度高く計測できる。
Inertial Measurement Unit	IMU	慣性計測装置。INU (Inertial Navigation Unit)、IGU (Inertial Guidance Unit)、IRU (Inertial Reference Unit) とも呼ばれる。ジ ャイロスコープと加速度計を使用して回転 と加速度を検出。これにより航空機の傾き を計測
Digital Elevation Model	DEM	数値標高モデルの総称。DTM と同じ意味の 言葉として使われることもある。 国土地理院の DEM の説明では、DTM を指 している。
Digital Terrain Model の略	DTM	地盤高。地盤の標高で、植生や建物など地 物の高さは含まれていない。地形解析では この DTM を使う。
Digital Surface Model	DSM	地盤の上の植生や建物などの地表物を含ん だ地表面の表層標高。
Digital Canopy Height Model	DCHM	森林を対象とした場合、DSM と DTM の差 から算出できる林冠高。CHM(Canopy Height Model)と呼ばれることもある。

新規計測時に留意すべき事項

新規に航測会社へ LiDAR 計測を依頼する場合、計測時の仕様に加えて、納品物の仕様もあらかじ め検討しておく必要があります。LiDAR 計測データからは、直接取得されるレーザ点群データだけでな く、それに対してフィルタリング等の様々な処理・加工を行うことにより、DTM、DSM、DCHM、樹頂点 など様々なデータを得ることができます。

発注仕様を検討する際に参考になるのが、「森林資源データ解析・管理 標準仕様書案 ver1.2」 [標準化事業検討委員会,解析・管理分科会,計測分科会,2022]です。

この仕様書案は、適切な森林管理や需要に応じた木材生産を可能にするため、レーザ計測データの 解析及び管理について、現状と課題・問題点の整理とその改善・解決策や方向性を取りまとめるととも に、それを踏まえた最適な解析及び管理手法の標準化を検討することを目的としています。

この森林資源データ解析・管理標準仕様書案に合わせつつ、地位指数の計算にも必要なデータセットを納品することが望ましいと考えられます。

森林資源データ解析・管理の標準化仕様案 2022年3月現在の Ver1.2 によれば、

・計測時の仕様については、森林資源解析で地盤面での点密度が4点/m²以上が適していること ・森林資源データ解析・管理では、下図に示した、森林資源量計測データである「計測範囲ポリゴ ン」、「樹種ポリゴン」、「単木ポイント」、そして森林資源量計測データを合成・集計して得られる「森 林資源量集計ポリゴン」、「解析範囲ポリゴン」、地形情報データとして「標高(DEM)」(本手引き では DTM と呼んでいる)、「傾斜」、「微地形図」、「路網」が必要

となっています。

地位指数の計算には、<u>DCHM</u>(TIF 画像が望ましい)が必須になりますので、忘れずにリストに加えましょう。また、現地の状況を確認するためには、DCHM、DTM(DEM)はもちろんのこと、DSM (TIF 画像が望ましい)が有用ですので、この標高データも納品リストに加えましょう。いくつかの成果 は中間的に作成されるのでそれらは忘れずに納品成果物にしましょう。コスト増にはならないはずですの で、依頼先に確認してみましょう。

■標準仕様書が対象とする森林資源量データ

■標準仕様書が対象とする地形情報データ

4. 地位指数分布図作成の前提条件

条件

・対象とする樹種はスギ人工林とヒノキ人工林です

- ・以下のデータが必須です
 - 森林簿 GIS:林齢と樹種が格納されている GIS ポリゴン
 - LiDAR データ: 1 m メッシュサイズ以上の DTM(digital terrain model, 地盤高)と DSM (digital surface model, 表層高)、もしくは DCHM

・地位指数図のメッシュサイズは 20m を想定しています

作業環境

使用するソフトウェア:

QGIS バージョン 3.16 (長期安定版) : 無料 3.16.16 で操作確認済み Microsoft Excel 2013 より新しいバージョン

使用する PC の推奨スペック等:

ストレージ : 高速 HDD や SSD

RAM:8GB以上

- LiDAR 納品物にどのようなデータ があるか確認しましょう
- データの所持や今後の撮影の有 無など状況に応じた地位指数図 作成のながれを確認します

まず、土台となる 20mメッシュの正方形ポリゴンを対象エリアで作成したうえで、上層木平均樹高(以下「Ht」)、樹種(スギ・ヒノキ)、林齢の 3 種類の 20m メッシュの分布図を作成します。これら 3 つの情報に、樹高成長曲線をあてはめて地位指数分布図を作成します。

図 a, b, c に示したような 20m メッシュのH t 分布図、樹種分布図、林齢分布図と地位指数曲線 を使い、図 d に示したような 2 0 m メッシュの地位指数分布図を作成します。

地位指数曲線については、樹種ごとに(必要であればさらに地域別に)準備しましょう。既存のものを 使ってもよいですし、LiDARの高さデータを活用して新しく作成することも可能です。

a. LiDAR Ht 分布図の イメージ

d. 地位指数分布図のイメージ

各分布図の作成のながれ

地位指数分布図の作成においては、まず手持ちの航空機 LiDAR 計測データがどのような仕様のもの であるかによって処理の手順が変わってきます。特に(2)で示したフローに従って、手持ちデータの内 容を確認し、作業を進めていきます。

(1)格納ポリゴン:20m四方のメッシュ

土台となる 20m メッシュポリゴンは、平面直角の原点から作成されます。必要な場合は森林 GIS フォ ーラムに問い合わせれば、データを利用できます。航測会社も所有していますので納品物リストに加えて もよいでしょう。全国共通の 20m メッシュから必要なエリアを抜き出します。 ← 作業1参照(29 ペ ージ)

(2) 上層木平均樹高の計算・分布図作成の方法

6 淮備	💚 データの座標参照系の確認と統一
	使用する森林簿 GIS ポリゴンや LiDAR データの 座標参照系を確認し、もし違う座標参照系を使っ
TIPS	ている場合は、統一しておきましょう(6 準備 ペー ジ 22~参照)。
	林相境界ポリゴンがある場合…
航空機 LiDAR の納品物 TIPS:納品の際は、XYZ や CSV ではなく、TIF 画像を航測	森林簿ポリゴンの林相境界と実態が乖離している 場合、LiDAR データから作成の林相境界ポリゴン を活用するとより精度が高くなります。
会在に低限しょしょう。XYZ やCSV は一度Jアイルを変換する必要があります。→ 作業4参照	この場合、林相境界ポリゴンに森林簿情報を GIS 処理で付与(たとえば、重心の位置でポリゴン同士 を連結)して利用します。

データの準備

- 森林簿 GIS ポリゴン:樹種及び林齢の空間的な最小単位が区分できる小班レベルの空間 解像度が必要ですが、利用が困難であれば精度は低くなりますが林班ポリゴンで代用しましょ う。林齢と樹種は必須です。林齢情報に多少不確実性があっても、手持ちのデータで計算を 進めることは可能です。作業途中で林齢と樹高が一致していないと考えられる箇所(例えば 樹高が10mで林齢が100年)があれば、識別・除外することが可能です。
- LiDAR DCHM 画像 (TIF ファイル): なければ DSM と DTM の TIF 画像から作成します。

座標参照系

GIS では位置座標の定義が重要です。この定義を座標参照系として GIS を使っていくうえで設定します。座標参照系は、QGIS では CRS (CRS: Coordinate Reference System)と表記されています。CRS は二つに大別され、緯度経度の度単位で表される地理座標系(緯度経度座標系とも呼ばれる)と、メートル単位でのXY座標で表される投影座標系(直角座標系とも呼ばれる)があります。それぞれの詳細については下のサイトをご確認ください。

 QGISのサイト:座標参照系 https://docs.qgis.org/3.4/ja/docs/gentle_gis_introduction/coordinate_refe rence_systems.html#

○ 朝日航洋株式会社:

第1回 座標参照系(CRS)とは? https://www.aeroasahi.co.jp/qgis/post/2020/02/crs_01/ 第2回 座標参照系(CRS)とは? - QGIS での CRS の選び方 https://www.aeroasahi.co.jp/qgis/post/2020/04/crs_02/ (2022年3月15日時点) 日本国土内の座標をあらわす代表的な座標参照系には、まず日本測地系 2011 (通称 JGD2011; Japanese Geodetic Datum 2011) です。平面直角座標系 (19座標系とも呼 ばれる) もよく使われる座標系で、日本の公共測量で採用されている座標系です。日本を19のゾー ンに分割しています。

データを使う前に、所持しているデータが地理座標系か投影座標系(どこのゾーン)か、また JGD2011 か WGS84 かなど、定義をまず確認する必要があります。確認方法は、例えば各都道府 県が発注した航空機 LiDAR 計測データであれば、納品物の仕様書に記載されていると思われます。

GIS の処理ではメートル単位の距離や面積の計算をすることが多く、そのような場合は投影座標系に変換して作業をすすめましょう。

座標参照系 (CRS)の確認

QGIS を起動します

CSR を確認したファイルを QGIS にドラッグアンドドロップします

レイヤ欄のファイル名を右 クリックし、プロパティを選 択します

レイヤプロパティの左側のタブから、 🙆 マークの情報タブをクリックします

座標参照系(CRS)の箇所を確認します

ここでは、「EPSG:6672 - JGD2011 / Japan Plane Rectangular CS IV - 出力レイ ヤ」と記載されています

これは JGD2011 の投影座標系ゾーン4を示しています

Q 1177	プロパティ — LiDAR_Area — †	青報
a .	ストレージ	Area.shp ESRI Shapefile
3.2	コメント 文字コード ジオメトリ	UTF-8 Polyzon (MultiPolyzon)
Ĩ,	座標参照系(CRS)	EPSG:6672 - JGD2011 / Japan Plane Rectangular CS IV - 出力レイヤ

EPSGとは European Petroleum Survey Group という団体によって作成された参照座標系のコードです。

もしも、座標参照系が空欄であれば、CRS を設定します

レイヤ欄のファイル名を右クリックします

例えば、上図と同じく JGD2011 ゾーン 4 に設定したい場合は、レイヤの CRS> EPSG:6672 を選択します

Q 検索(Ctrl+K)	 ・● レイヤの領域にズーム(Z) ・□ 選択範囲にズーム(Z) ・○ 選択範囲にズーム(Z) ・○ 全体図に表示(S) ・□ 地物の数を表示 レイヤをコピー レイヤの名前を変更(n) ・● 		🔒 : 100%	¢ 1 0
	 レイヤを複製(D) レイヤの削除(R) 			
	一番下に移動(<u>B</u>)			
	 に			
	レイヤを表示する縮尺の設定(S)			
	レイヤのCRS	•	CRSなし	
	エクスポート	•	EPSG:6672 仁設定	
	スタイル プロパティ(P)		EPSG:4612 に設定 EPSG:2446 に設定	

ほかの座標系を選択したい場合は、「レイヤの CRS を設定」をクリックします

レイヤを表示する縮尺の設定(<u>S</u>)... レイヤのCRS エクスポート スタイル プロパティ(<u>P</u>)... とPSG:4612 に設定 EPSG:2446 に設定 ESRI:102613 に設定 レイヤのCRSを設定...

JGD であれば、「フィルタ」欄に JGD と入力します

「あらかじめ定義された CRS」欄に JGD の座標参照系の一覧が表示されますので、そこから 該当する座標系を選択し、OK ボタンを押します

2 座標	参照系の選択			3
フィルタ	Q.			-
最近使	用したCRS	-		
座標参	照系	参照系ID		
JGD201 JGD200	11 / Japan Plane Rectangular CS IV 00	EPSG:6672 EPSG:4612		
JGD200 JGD_20	00 / Japan Plane Rectangular CS IV 011_Japan_Zone_4	EPSG:2446 ESRI:102613		
4				,
ちらかじ	め定義されたCRS	J	→致しない座標参照系を	認す
座標参	照系	参照系ID		-
	JGD2000 / Japan Plane Rectangular CS XVIII	EPSG:2460		
	JGD2011 / Japan Plane Rectangular CS I	EPSG:6669		
	JGD2011 / Japan Plane Rectangular CS II	EPSG:6670		
	JGD2011 / Japan Plane Rectangular CS III	EPSG:6671		
	JGD2011 / Japan Plane Rectangular CS IV	EPSG:6672		
4	ICODOTA / Inner Blance Besterneyler CCIV	FREC.cett	13	
		1- E	100 C	1
JGD20 WKT P	ROJCRS["JGD2011 / Japan Plane Rectangular CS IV",	17		

EPSG のコード一覧は、下のホームページに記載されていますので、適宜参照ください

O EPSG コード一覧表/日本でよく利用される空間座標系(座標参照系)
 https://lemulus.me/column/epsg-list-gis (2022 年 3 月 15 日時点)

座標参照系 (CSR)の変換

ベクタデータの座標参照系を変換したい場合は、エクスポート機能を使い新しくファイルを作成します

メインメニューバー>ベクタ>データ管理ツール>レイヤの再投影 を選択

形式	ESRI Shapefile	+
ファイル名 レイヤ名	FILES¥KENSHU_DATASET¥SAGYO1_20mMesh¥TagetArea_JGD2011Z04.shp	a
座標参照系(CRS)	EPSG:6672 - JGD2011 / Japan Plane Rectangular CS IV	7
文字コード	UTF-8	*
 ■ 選択地物のみは ▼ エクスポートする 	i在する 6フィールドとエクスポートオブションの選択	
名前 型 J fid Real		

「ベクタレイヤを名前を 付けて保存」 ダイアロ グが表示されます

形式:

ESRI Shapefile を選 択すると、ArcMap でも 利用できます

ファイル名:

適宜つけましょう

※ファイル名やパスに全角 文字がある場合、エラーが 生じるケースがあります

座標参照系:変換したい座標系を選択します

OK ボタンをクリック

座標変換されたファイルが作成されます。

画像(ラスタ)データも同じ手順で作業します。

Q ラスタレイヤの保存	F					2
出力モード	• 生データ	画像				
形式	GeoTIFF				- V	RTPER
ファイル名	È.					
レイヤ名		-				
座標參照系(CRS)	EPSG:6672	- JGD2011 / Ja	pan Plane	Rectang	ular CS IV	-)(*
▼ 領域 (現在:	614)					1
▼ 領域 (現在:	レイヤ) 北	97421,5000				
▼ 領域(現在 : 西 78676.5000	レイヤ) 北	97421.5000	東	97773.50	000	
▼ 領域 (現在: 西 78676.5000	レイヤ) 北 南	97421.5000 86227.5000	東	97778.50	100	
▼ 論城 (現在: 西 78676.5000 カレントレイ	レイヤ) 北 南 ヤの領域	97421.5000 86227.5000 レイヤから計算	」 東 (+)	97773.50 キャンバ	000 、入の領域	
 ● 領域(現在: 西 786765000 カレンドレイ ▼ 解像度(現在) 	レイヤ) 北 南 ヤの領域 ※レイヤ)	97421.5000 86227.5000 レイヤから計算	東 [+]	97778.50 キャンバ	000 (スの領域	
 ● 領域(現在: 西 78676,5000 カレンドレイ ● 新作 0.5 	レイヤ) 北 中の領域 ドレイヤ)	97421,5000 86227,5000 レイヤから計算 垂直(Vertical)	東 [97778.50 キャンパ)00 スの領域 レイヤ解像度	

解像度はもとのデータと同 じサイズに設定しましょう

7. 作業1:対象エリアの 20Mメッシュの準備

TIPS

国土地理院の行政界ポリゴン

国土地理院の HP (https://nlftp.mlit.go.jp/ksj/jpgis/datalist/KsjTmplt-N03.html)からダウンロード可能。ファイルは xml 形式。shape 形 式への変換ツールを利用。 https://nlftp.mlit.go.jp/ksj/jpgis/jpgis_tool.html 座標 系は測地成果 2000(JGD2000)。単位は緯度経度

メッシュサイズについて

「航空機 LiDAR による森林計測」で述べた通り、「森林資源データ解析・管理標準仕様書案」では 森林資源情報をメッシュ単位で取り扱うことが提案されており、その際の空間解像度として 20m メッシ ュ単位とすることとなっています。メッシュサイズを統一しておくことにより、森林資源集計ポリゴンと地位指 数の情報を一対一で連携でき、利便性が高まります。

森林	資源量集計メッシュ
	-
朱訂	
1999 Land	P.M.
用★データ	
+11	個種ポリコン

	属性名	形式	単位	全桁数	小数点以下 析数	備考	仕様区分 ●:基本 〇:推奨
1)	解析磁理	Text		50		スギ ギノ * 類 マツラドング サフマツツ マツママツツ その又マツ ママツN イン ママツ ママツ ママツ ママツ ママツ ママツ ママツ ママ	•
7)	平均樹高	Double		4	小败点以下1桁		•

QGSI での作業

準備するデータ

■ 解析対象のポリゴン:

参照座標系を統一しておきましょう (6 準 備 ページ 22~ 参照)

ゾーンは 19 に区分されています

https://www.gsi.go.jp/sokuchikijun /jpc.html

① -1 対象範囲の GIS ポリゴンを QGIS 画面に追加

QGIS を起動し、対象範囲の GIS ポリゴンデータ(拡張子 shp)を QGIS の画面に追加します ※QGIS にポリゴンを追加する方法はいくつかありますが、ここでは 1 例を示しています

②-2 不要な範囲を除外する

・作成されたデータの不要な範囲を除外します

→ツールボタンから[場所による選択]ボタンを選択します

「場所による選択」は下図のように

ベクタ>調査ツール>場所による選択… からも使用できます

・[場所による選択]画面では次のように入力します →入力後[実行]を選択します

日本 場所による 選択	×
パラメータ ログ	
選択する地物のあるレイヤ	
(=== mesh20m [EPSG:6672]	÷ […]
空間的関係	
✔ 交差する(intersect) 接触する(touch)	
言む(contain) 重なる(overlap)	
- 離れている(disjoint) - 含まれる(within)	
等しい(equal) 変差する(cross) 比較対象の地物のあるレイヤ	
□ 行政界 [EPSG:6672]	· 🛱 🗞 🖳
_ 選択した地物のみ	
現在の選択状態を以下のように変更する	
新たに選択	7
0%	年42dt2/16
in terret interaction	HELEZ AUT

変更が必要な箇所のみ記載します 選択する地物: ①-2 で作成したメッシ

選択9 る地物: ①-2 C1F成しにメッシ ユデータ

空間的関係: 交差する

比較対象の地物:①-1で追加した 対象範囲データ

・[実行]後、レイヤ画面からメッシュデータを選択し、

右クリック→[エクスポート]→[選択地物の保存]を選択します

0.47	23	
< A . 1	6 ₁ = 3	
✓ 同 行政!	レイヤの領域にズーム(Z) 選択範囲にズーム(Z) 望択範囲にズーム(Z) 全体回に表示(S) 他物の数を表示 レイヤをコピー レイヤの名称を変更(m)	
	 レイヤを複製(D) レイヤの利降(D). 一番下に移動(B). ガレーブレクアの続きチャック 	
7505 日日 2017日 101日 101日 101日 101日 101日 101日 101日	■ 属性テーブルを開く(Q)	
DI GN	レイヤを表示する線尺の設定(<u>S</u>)… レイヤのCRS	. ,
F III FAY	1725-1	他物の保存
E LEY	29136) 選択地物の保存
+++	プロバティ(P)	レイヤ定義ファイルとして保存。
 2 検索(Gul+ 	K)	QGISレイヤスタイルファイルとして保存

形式	ESRI Shapefile					
ファイル名	F:¥Work_manual¥	01_data¥DCHM¥bk¥mesh	n20m_select.shp	@ ···		
レイヤ名	(
座標参照系(CRS)	蝦系(CRS) EPSG:6672 - JGD2011 / Japan Plane Rectangular CS IV					
文字コード		Shift_JI	8	-		
✔ 選択地物のみ保	存する					
▶ エクスポートする	るフィールドとエクス	ポートオブションの選択				
▼ ジオメトリ						
ジオメトリタイプ		自動		*		
マルチタイプに	する					
2次元を含める	5					
▼ 🧮 領域 (現4	主 なし)					
	北	102081:3805				
西 49319.3335			更 97779.3385			
	南	76131.8805				
カレントレイオ	70)領域	124个加强計算 -	キャンパスの領域	6		
▼ レイヤオブション						
RESIZE NO				*		
SHPT						
	7 /0+++++++-	And the second sec				

・任意の名前で保存することで対象 範囲の 20m メッシュデータを作成する ことができます

変更が必要な箇所のみ記載します。

出力ファイル:任意のファイル名を設 定ください

※ファイル名やパスに全角文字がある 場合、エラーが生じるケースがあります

①-2 DCHM データの解像度を変更する

・画面の[ラスタ]から[投影法]→[再投影(warp)]を選択

①-3 樹冠高データの解像度を変更する

・ [再投影(warp)]を選択すると新しい画面が表示されます

Q 再投影(warp)	×	
パラメータ ログ		各項目は次のように選択します
入力レイヤ	×	
DCHM_over0 [EPSG:6672]	.+ []	入力レイヤ : DCHM を選択
変換元CRS [オプション]		
プロジェクトCRS: EPSG:6672 - JGD2011 / Jap	an Plane R 🕋 📃 👼	
ラスタのCRS [オプション]		リサンプリング法:最大
プロジェクトCRS: EPSG:6672 - JGD2011 / Jap	an Plane R 🝷 🍓	
リサンプリング法		
最大	*	亦協生 CDS 用位での解偽
出力パンドのnodata値 [オプション]		支換元 CR3 単位 Cの解縁 度:10
未設定	1	
変換先CSRの単位での解像度 [オプション]		
10.000000	(‡]D	出力ノアイル:仕息のノアイル名 を設定
▼ 詳細パラメータ	×	CDXAL
0%	キャンセル	※ファイル名やパスに全角文字が ある場合、エラーが生じるケースが
バッチプロセスで実行。 実行 閉	53 1 117	あります

②-1 樹頂点の樹高を、20m メッシュ単位で平均する ②-1-1 20m メッシュデータを QGIS に追加する

作業2 ①-3で作成した、不要な範囲を除外した 20m メッシュポリゴンを準備します

②-1-2 20m メッシュごとに平均樹高を算出する

・[プロセシングツールボックス]から[ラスタ解析]→[ゾーン統計量 (ベクタ)] を選択します

Q ソーン統計量 (ベクタ)	各項目は次のように選択します
パラメータ ログ	入力レイヤ: ②-1-1 で追加し
Mesh20_NakaLiDAR [EPSG:6672]	★ 20m メッシュデータ
選択した地物のみ ラスタレイヤ	ラスタレイヤ: ①-2 で作成した 10m 解像度の DCHM デー
対象バンド 1	
ラスタ値を収納するカラム名の接頭辞	ラスタ値を収納するカラム名の 接頭辞:Ht
計算する統計量	
8 オブションが選択されました	計算する統計量:[…]より、
ゾーン統計量出力	
[一時レイヤを作成]	パラメータ ログ
▼ アルゴリズムの終了後、出力ファイルを開く	 計算する統計量 カウント (Count)
	✓ 平均
	一 標準偏差 最小値
0%	
バッチプロセスで実行…	実行 閉じる 景希少値 景頻値 多様 分数 (Variance)

ゾーン統計量出力:任意のファ イル名を設定

(保存ファイル名の例: Mesh20_Ht)

・出力された Shp ファイルの属性テーブルに平均樹高の値が追加されます

9. 作業3:DTM 画像と DSM 画像から DCHM を作成

QGIS での作業

- 準備するデータ
- DTM 画像
- DSM 画像

樹冠高 DCHM 画像がなく、地盤高 DTM と表面高 DSM の画像がある場合は、DSM と DTM の差分で DCHM 画像を作成します

ラスター計算機を使って DSM と DTM の差分を計算

エクスプローラーで、ファイルを格納している フォルダを表示します

DTM(DEM と表記されることもある)画 像と DSM 画像を QGIS にドラッグアンド ドロップします

画像がそれぞれ表示されます

ラスタ> ラスタ計算機…をクリックします

Q 無題のプロジェクト - QGIS

プロジェクト(」)	編集(<u>E</u>)	Ľ⊐-(⊻)	レイヤ(」)	設定(S)	プラグイン(P)	ベクタ(0)	ラスタ(民)	データベース(D)	Web(W)
D D		1	•/ 6	m			1 578	計算機	N
			a l		PP.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57.5	を揃える	45

ラスタ計算機ダイアログが表示されます

021			N	5781.78					
			63	272614		_			
DSM@1				出力レイキ	7				•••
DIMINIST				出力形式		GeoTIF	F'		*
				選択	ノイヤの領域				
				X最小値	78676.50000	\$	X最大值	97773.50000	
				Y最小値	86227,50000	\$	Y最大値	97421.50000	+
				カラム	38194	5	行	22388	2
				出力の座	需参照系(CRS)	EPSG:6	672 - JGD:	2011 / Japan F -	1
				✓ 結果な	ビブロジェクトに追加	ロする			
▼ 演算子									
+	*	sqrt	cos	sin	tan		log 10	Ç.	
-	1	^	acos	asin	atan		ln) X	
	>	() ÷	3=	<=	>=		AND	OR	
<			-						
< abs	min	max							
く abs 式	min	max							
< abs	min	max							
الم ملك من	min	max							
مه abs تر	min	max				_			
≺ abs ₹	min	max				_			
く abs 式	min	max							
مل abs ح	min	max							
< abs ₹	min	max							

【バンド】欄の DSM@ 1をまずダブルクリックします。 【式】に"DSM@ 1 "と表示されます。 【演算子】欄からマイナス記号「-」をクリックします。 【バンド】欄の DTM@ 1をダブルクリックします。

出力レイヤのファイル格納場所と名前を決めます

OK ボタンを押します

2010 11									
ICF.				529614	7				
DSM@1				出力レイ	7	OCESS	FILES¥OUT	TPUT¥DCHM 🚳	1
DIM@1				出力形式	;	GeoTIF	F		-
				選択	レイヤの領域	1			
				X最小值	78676.50000	\$	X最大値	97773.50000	
				Y最小值	86227.50000	¢	Y最大值	97421.50000	
				カラム	38194	\$	行	22388	
				出力の座	標参照系(CRS	EPSG:6	672 - JGD	2011 / Japan F 👻	16
7 演算子				A HOSE	670717HO9	NU 7 Q/			
+	*	sqrt	cos	sin	tan		log 10) (
-	1	· ·	acos	asin	atan		In)	
<	>	•	!=	<=	>=		AND	OR	
abs	min	max							
2									
"DSM@1" - "	DTM@1"								

しばらくすると、DCHM 画像がマップ画面に表示されます(1~10 分程度の時間を要す) 画像を拡大して、単木の樹冠の粒が見えるか確認してみましょう

DCHMの数値が0未満の場合、すべて0に置き換えます

♀ ラスタ計算機				B					
心ド				529611	7				
DCHM@1				出力レイ	Þ	\$¥OU	TPUT¥DCH	IM_over0.tif	a 199
DTM@1				出力形式	à	Geo	TIFF		
				選択	レイヤの領域				
				X最小值	78676.500	00 1	X最大値	97773.5000	0 🗢
			Y最小值	86227,500	00	Y最大値	97421.5000	0 ‡	
				カラム	38194	:	行	22388	\$
				出力の座	標参照系((RS) EPS	G:6672 - J	GD2011 / Ja	i¢ 🕋 🏼 着
▼ 演算子					0000000	czena na			
+	*	sqrt	cos		sin	tan	loi	s10	č
- j	1	~	acos	a	sin	atan		h)
<	>	(=)	!=		<≠	>=	A	ND	OR
abs	min	max	1						
₹									
("DCHM@1" 式は正しいです	>= 0) * "DCH	M@1" + ("DCH	M@l" < 0)	* 0					

を入力

条件②: ("DCHM@1" < 0) * 0 <- DCHM 画像の数値が0未満のセルは、0を入力

(5-6 分の時間を要す)

il and	
State of the second	
and the second	
200	
And a	
1	
1	
1/1	Г
1 2	
A P	
1 be	
Mar 1	
114	
A	
1800	
1	
1	
C. C.	
2	
2	
~	
1	
14	
14	
1	
25	
1 and	
No.	
Xa	
A.S.	
No	
No	
No.	
No.	
No.	
No.	
AL - IO	
No Ide	
We - Ide	
Mar - Iday	
and the series	
and the second	
Mar - Iday	
All and a start of the	
Mar - Martin	
and the second second	
and the second second	
All and a state of the	
AND	
No. of the second se	
No. of the second secon	
AND	
No and the second secon	
Nor and the second seco	
No and the second secon	
No and the second secon	
No and the second secon	
No and the second second	
No and the second secon	
A A A A A A A A A A A A A A A A A A A	
No and the second secon	

10.作業4:TIF 画像に変

QGIS での作業

本手引きでは手順は説明しません が、後述のインターネットサイトで詳し い作業手順が記載されていますの で、そちらを参照しながらデータを作 成してみましょう。

TIPS

換

-----ファイルの変換を発注先に依頼できるかも?

自分で変換することが困難な場合、発注先に tif 形式で再納品が可能 か相談してみましょう。

ファイルサイズが大きく、またファイルも図郭で分割されているので、作業に時間を要します。

QGIS の LiDAR プラグイン "LASstools"、"FUSION"の活用

 インターネットで分かりやすいサイトがあるので、そちらを参照して作業してみましょう 「三次元点群データを QGIS でひり出してみた」
 <u>https://qiita.com/Yfuruchin/items/7b9ea3e823824d2e4e86</u> 投稿日 2019 年 12 月 30 日 更新日 2020 年 01 月 12 日

11.作業 5 : 樹種と林齢の 20M メッシュ化

QGIS での作業

準備するデータ:

- 森林簿 GIS
- 作業2の上層木平均樹高のデ ータも含む20mメッシュ

森林簿 GIS ポリゴンの林齢と樹種をそれぞれ 0.5m 解像度のラスタ データに変換し、そのあとに 20m メッシュ内の最頻値をそれぞれ抽出 し、20m メッシュデータに加工します。

① ベクタのラスタ化

①-1 小班ポリゴンを追加

小班ポリゴンを QGIS に追加します	
🛄 1 📝 🛄 🖛 [P4_JUSHU_RINREI	
ファイル ホーム 共有 表示	
← → × ↑ 🔜 « _220128_TEBIKI_PROCESS_F > P4_JUSHU_RIM	JREI
 ▲ クイック アクセス ▲ デスクトップ ★ ● ダウンロード ★ ● ドキュメント ★ ■ ピクチャ ★ 	
Q *無意のプロジェクト - QGS プロジェクト』 編集(日 ビー VS レイヤ(L) 設定(S) ブラグイン(E) ベクタ(Q) ラスパ ())))))))))))))	918 ====================================
🥵 🎕 Vi 🖉 🧠 💘 🖉 / 🖪 🕾 🏷 - 🕅 (
7599 BR 200 200 200 200 200 200 200 200 200 20	の変換に、機算transoformが使用され 🚪 🛛 詳細 🛛 😣
✓ Grid20m Nakacho select ✓ 小班_region	and the second s

①-2 樹種コードをラスタ化

森林簿 GIS ポリゴンのファイルを使って、「ベクタのラスタ化」をします ラスタ> 変換> ベクタのラスタ化

ブラグイン(P) ベクタ(O)	ラスタ(<u>R</u>) データベース(<u>D</u>)	Web(W) メッシュ(M) プロセシング(C) ヘルプ(H)
	 ラスタ計算機 ラスタを揃える ジオリファレンサ 解析 投影法 その他 抽出 	
	変換	 PCTをRGBに変換 デスタのベクタ化 (polygonize)
		🍡 ベクタのラスタ化 (rasterize)
		 RGBをPCTに変換 影式変換(gdal_translate)

0% ∿∡≺⊰⊓⊁⊃⊅≢%=	
▼ アルコリスムの除了 (変、出力ファイルを開く	-
1-04/21/Mc1*151	
5スタ化	
メモラスタイレマ取作りの2世初の7世をそのポリコ 追加のコマンドラインパラメータ [オプション]	レノリントロリーンクローク
不認定	心动战 (111)
相定1世で争制に約期にする(nodataを防止 主語字	ICERCIAL COR
トIDatö2	+2) +++>>-> 1
出力のデータ型	
- 検証 へルス	9
名前	
วียวรา/ม	
追加オブション [optional]	
▼ 詳細パラメータ	
四アリアンドにTBAEFIOUd(3)固を書い当てる レオン 0.000000	2321
山市10、均田均常のコーンがまますかい迎アマ「土の	51-5 ⁻ .1
出力領域	
0.000000	
鉛直方向の解像度	
0.000000	
水平方向の解像度	
出力ラスタサイズの単位	
0.000000	
固定焼き込み値 【オブション】	
焼き込む値の属性(フィールド)【オプション】	
選択した地物のみ	
🗇 Shohan_Jushu_Rinrei 🛛	
入力レイヤ	
1124 3 112	

X 以下の項目について設定しましょう 入力レイヤ:森林簿 GIS ポリゴンを 1.00 - 03 2 選択しましょう 焼きこむ値の属性(フィールド): -樹種コード(数値である必要がありま す)のフィールドを選択 (ii) ÷ 出カラスタサイズの単位:地理単位 * **水平方向の解像度**: 0.5m 1 (LiDAR の解像度と合わせる) 鉛直方向の解像度: 0.5m)÷ (LiDAR の解像度と合わせる) 出力領域:欄の右の□を押し、「レイ ヤの領域を使う…」を選択 (i) # 詳細パラメータ **出力のデータ型**: Int16 ÷ ラスタ化:保存場所とファイル名を指 値 (Value) 定しましょう (例: JushuCD という名 称で保存) ÷. **(**

......

有心也非

ANJ.

実行 閉じる

メモ もし、作業時間がかかりすぎるようでしたら、作業をキャンセルし て、ラスタ化欄で「一時ファイルへの保存」をしましょう。一時ファイル (OUTPUT という名前になる)がレイヤに表示されますので、これを Geotif 形式でエクスポートします。

↓ 出力ファイル欄を空欄にして実行をクリックすれば、一時ファイルが作成 される

出カファイルを空欄にしておく

出力ファイル			
(一時ファイルへの保存)			
	0%		辛約,也ル

①-3 林齢をラスタ化

上述の①樹種コードのラスタ化と同じ手順で、林齢の0.5m解像度のTIF画像を作成します(例:Rinreiという名称で保存)

② 樹種と林齢を 20m メッシュにデータ集約 ②-1 樹種データの集約

20m メッシュ内に情報を集約します

まず、上層木平均樹高を含む20m メッシュファイルを QGIS 上で開きます

20m メッシュ内の統計値を抽出

プロセッシングツールボックス>ラスタ解析>ゾーン統計(ベクタ)をクリック

プロセシングツールボックス	0 ×
🎭 🦺 🕑 🖹 💷 🔦	
Q. 検索	
● 最近使ったツール	*
► Q 7 -9 <u>∧</u> -7	
► Q ベクタオーバーレイ	
 Q ベクタジオメトリ 	
▶ Q ベクタタイル	
Q ベクタテーブル	
 Q ベクター般 	
 Q ベクタ解析 	
 Q ベクタ作成 	
 Q ベクタ選択 	
Baster calculator	
ショ セル統計量	
* ゾーンヒストグラム	
※ ゾーン統計量 (ペクタ)	*

まず、樹種コードについて、20m メッシュ最頻値を抽出します

Q ゾーン統計量(パクタ)

パラメータ ログ			ゾーン統計
λ λ μ			このアルーリズンは
Grid20m_Nakacho_select [EPSG:6672]	- 13 %	···	本統計量を計算
選択した地物のみ			
ラスタレイヤ			
JushuCDRasterTemp			
対象バンド			
パンド 1 (Gray)		*	
ラスタ値を収納するカラム名の接頭辞			
JushuCD			
計算する統計量			
1.オブションが遅択されました		***	
ゾーン統計量出力			
[一時]」(安全性成]		1.00	
✔ アルゴリズムの終了後、出力ファイルを聞く			
	13		
	0%		
バッチプロセスで実行			実行

入力レイヤ: 20m メッシュデータ を選択

ラスタレイヤ: 樹種コードのラスタ

ラスタ値を収納するカラム名の接 頭辞:JushuCD

計算する統計量:カウントと最頻 値にチェック

ゾーン統計量出力:作成するファ イルの格納場所とファイル名を指 定

(保存ファイル名の例: Mesh20_Ht_JushCD)

※ ファイル名やパスに全角文字が ある場合、エラーが生じるケース があります

作成したファイルを確認します

ファイルが自動的に開かれていれば、レイヤ欄でファイルを確認できます ファイル名の上で右クリックし、「属性テーブルを開く」をクリックします

新しく2つのフィールドが作成されています。

JushuCDcount:

20m メッシュ内の Null 値以外の 0.5m メッシュの数

JushuCDmajority:

樹種コードの最頻値

フィールド名:

カウントの場合、先ほど設定した接 頭辞に count という文字が追加 されて表記されます

最頻値の場合、先ほど設定した 接頭辞に majority という文字が 追加されて表記されます

Q Mesh20m_jushu batch_220225_jushu :: 地物数合計: 1742202、フィルタ: 1742202、選択: 0

	fid	id	left	top	right	bottom	JushuCDcount	JushuCDmajority
1	1	6838711	49309.72607545	92009.6489751268	49329.72607545	91989.6489751268	0	NULL
2	2	6838712	49309.72607545	91989.6489751268	49329.72607545	91969.6489751268	0	NULL
3	3	6842681	49329.72607545	92009.6489751268	49349.72607545	91989.6489751268	259	38
4	4	6842682	49329.72607545	91989.6489751268	49349.72607545	91969.6489751268	1.182722685414	38
5	5	6842683	49329.72607545	91969.6489751268	49349.72607545	91949.6489751268	0	NULL
6	6	6842781	49329.72607545	90009.6489751268	49349.72607545	89989.6489751268	1118	38
7	7	6842782	49329.72607545	89989.6489751268	49349.72607545	89969.6489751268	1569	38
8	8	6842783	49329.72607545	89969.6489751268	49349.72607545	89949.6489751268	1190	38
9	9	6846650	49349.72607545	92029.6489751268	49369.72607545	92009.6489751268	304	38

2-2 林齢データの集約

林齢についても同じ操作で進めます 入力レイヤ:上で作成した樹種コードがついた 20m メッシュを使いましょう ラスタ値を収納するカラム名の接頭辞:Rinrei 保存ファイル名の例:Mesh20_Ht_JushCD_Rinrei

> ※ ファイル名やパスに全角文字がある場合、エラーが生じるケースがあり ます

12.作業 6:地位指数曲線 作成のためのサンプリング

QGIS での作業

準備するデータ:

- 作業5で作成したファイル
 - 森林簿 GIS
- その他現地を確認できるファイル (DSM や DTM、河川データ、 空中写真、衛星画像など)

森林簿林齢の齟齬をあらかじめ抽出

サンプリングする時には林齢の確実性が高い箇所を選択することが前提 となりますが、判断が難しい場合があります。

その場合、あらかじめ、作業8の地位指数分布図作成について、既存の係数を使って地位指数を計算してみましょう。

地位指数の数値が妥当な数値(例:既存の地位区分の最大と最小の枠内に収まる)の地点をサンプリングするのも一つの手段です。

航空機 LiDAR 計測データを使った地位指数曲線作成の

サンプリング方法

TIPS

地位指数曲線を作成するために、作成した 20m メッシュデータからサンプリングを行います。

サンプリングは、収穫予想表を作成する場合に行われる地上調査の調査地選定と同様の考え方で実施します。調査地選定について、以下のような点に留意する必要があります。

- 信頼性の高い収穫予想表の作成には、一つの樹種・地域を対象とした場合、少なくとも 100 点 以上必要
- 林齢(齢級)別に均等になるようにサンプリングする必要

現地調査では、予算や労力の関係から調査できる点数が限られますが、航空機 LiDAR 計測データの場合は、コンピューター上で選択するだけですので、齢級ごとに 10 点程度、20 齢級あると想定して 200 点程度をサンプリングします。

サンプリングにあたっては、以下の点に留意する必要があります。まず第一に、

■ 林齢が確実である

ことが必須になります。林齢に対して LiDAR データから算出した上層樹高(作業 5)が高すぎるない し低すぎる場合は、林齢が誤りである可能性が高いので、そのような場所はあらかじめ除外する必要が あります。そのうえで、以下の事項に留意してメッシュデータをランダムにサンプリングしていきます。

- 育成単層林で、面積1ha以上の小班
- 林縁が含まれるメッシュは除外する
- 谷部、尾根が含まれるメッシュはできるだけ避け、平衡斜面からサンプリングする

若齢林や高齢林では、1 齢級あたりでサンプルできる箇所数が目標に満たない場合も考えられますが、その場合は隣の齢級で必要数を満たすようにサンプリングしましょう。

補助的に Google Earth/Map や国土地理院の地理院地図(電子国土 Web)等も活用し、現 在から過去までの林相の変遷を確認することで、より確実なサンプリングが可能になります。

サンプリング作業

具体的なサンプリング作業では、QGIS でサンプリングするメッシュデータを選択し、属性テーブルにチェックを入れていきます。あらかじめ属性テーブルに「●●」フィールド(整数型)を追加し、サンプリングしたメッシュについて「1」を記入します。

CSV 出力 / Excel への読み込み

サンプリングが終了したらサンプリングデータ(●●フィールドが1のデータにフィルタを掛ける)を csv 形 式でエクスポートします。Csv データを EXCEL ファイルに読み込み、後述の樹高成長曲線をあてはめ ます。

サンプリングの例

例) 齢級ごとに 10 サンプル、3~20 齢級までの計 180 サンプルを取得し、樹高と林齢をプロット

林齢	サンプル数							
10-15	10							
16-20	10	40						•
21-25	10	35 [.] 30 [.]				و د در		
26-30	10	Ê ²⁵						•
31-35	10	<u></u> ¹⁵ ¹⁵			• •			
36-40	10	10						
41-45	10	5						
46-50	10	0	Ó	20	⁴⁰	⁶⁰ 木齢	80	10
51-55	10							
56-60	10							
61-65	10							
66-70	10							
71-75	10							
76-80	10							
81-85	10							
86-90	10							
91-95	10							
96-100	10							

13.作業7:樹高成 長曲線のあてはめ

Microsoft Excel での作業

準備するデータ:

作業6で作成したファイル (CSV や txt などの テキスト形式のファイル)

注) 本手引きは Microsoft 365 での作業画面を掲載し

TIPS

Microsoft Excel のソルバーツール

ソルバーそのものについては"エクセル ソルバー"等で 検索してください。

林齢と樹高の関係を示す樹高成長曲線式で使われる主要な成長曲線式はゴンペルツ式、ミッチャーリッヒ式、リチャーズ式は3つです。

ています

どの式を樹高成長曲線式として採用するかは林齢と樹高のデータを各式に当てはめた後、各式の精度 指標の値を比較して決定します。

式への当てはめは、R や Microsoft Excel が利用できます。ここでは操作が比較的容易である Microsoft Excel のソルバーツールを用いた樹高成長曲線の作成方法を示します。

ここで作成された曲線を地位指数曲線(ガイドカーブ)とします。

【参考】主要な成長曲線式 以下、A、B、K はパラメータで、ソルバーツールで求める ゴンペルツ式 : 上層樹高 = K × A^{exp(-B×林齢)} ミッチャーリッヒ式: 上層樹高 = K × (1-A × exp(-B × 林齢)) リチャーズ式 : 上層樹高 = K × (1-exp(-A × 林齢))^B

① ソルバーの準備

メインメニューバーのデータタブに、ソルバーが追加されます

② 樹高成長曲線のあてはめ

次にソルバーを使った樹高曲線の係数を計算する Excel シートを例として示します 例では、ゴンペルツ、ミッチャーリッヒ、リチャーズの3種類の式別にシートを準備しています

A A	В	C	D	E	F	1-
1 樹高曲線	へのあては	t Ø				-
2 コンベル	ツ式	1	+ #^)			÷
3 上層倒高	G=KXA	expl-Bx f	个面)			
9 デーク線	-			基度也種		
の樹種	<u>/L</u>	フギ		用度 相层 決定係数		7é
7 地域	-			RMSE	#DIV/0	15
8 サンブル書	¢	0		AIC	#DIV/0	1
9 平均值		#DIV/0!				
10 残差平方:	和	3832	←ソルバー	でこれを最小	化する	
11 平均との見	美の2乗和	#DIV/0!				
12						
13 モデルバ	ラメータ	1				
14 パラメータ	数	3				
15 K		20	←ソルバー	で変化させる	セル	
16 A		0.1	←ソルバー	で変化させる	セル	
17 B		0.1	←ソルバー	で変化させる	セル	1
18 地位指数		19.17407				
19						1
20 データ		111-11-11				Ð
21 林齢	上層樹高	推定値	残差平方	平均との差	2	材
22		2	4	#DIV/0!		÷
23		2	4	#DIV/0!		+
24		2	4	#DIV/0		-
20		2	4	#DIV/0		+-
27		2	4	#DIV/0		-
20		2	4	#DIV/0		-
ALC: NO DECISION OF THE OWNER OF	L LLAN	a name a star	Mitalassila	Dichar	de G	2

ミッチャーリッヒ式のシートを次のページにサンプルとして記載します

•	精度指標の		Sec.	_226224_088889554(*.200 *	_			
	計算に用い	746 <u>A-A</u> MA	R-561701	数式 データ 成盤 西京 へみ7				
	3.	A 133803	MS P3590	• 11 • A' A' = = = +.	th evaluation th	en sva		
•	各関数と	Datas Cartonia mount	81.11-	H- 0-A- 1- 533 83	E ELEMBLICAS	ent - 10- %	9 1 2 Satis	
	データの行	99/78-F	5	201 6	5'3	- D4		
	範囲を入力							
	ФОЩ С /(//»		V A B		_	_	_	
_		A	B	C		0	E	
	[13=x-2	- 44						
	教」を入力す	テージャのル		-001 MT(A17 A263604)	1			
	a (AICO	平均值		=AVERAGE(B17 B263694)				
	計算に用いる。	秘差平方和	-	=SLM(D17 D263594)			つを最小化する	
	ミッチャー	平均との差のつ	章 和	=SIM(F17F263694)		a larri cen	1	
	リッヒ式の場	1-50 00 20023		Southe LI LEAVOURT/				
	合、A、B、K	モデルパラメー	8					
	の3つのため3	パラメータ数		3				
	を入力)	K		48.0504303939119	+	ーツルバーで変	化させるセル	
•	A、B、Kは脱	A B 地位指数		0 790853981298015	+	←ソルバーで変化させるt		
	仔の間局成長			90000338500008	-	+ソルバーで変化させるセルー		
	田禄式寺のA、			\$C\$10*(1-\$C\$11*EXP(-1*\$C\$12*40))				
	B、N2学与に みらかじめ3				_			
	カレスおく	7-9	L TH MAN	10 P 13		の一方	東街とのまた	
	参考になる樹	8 1个出D	上層均向	住在1週 + SCS10+(1-SCS11+EVE(-1+SCS1	0+417)	気左半力	平均との左2	
	高成長曲線が	19	122	\$C\$10*(1-\$C\$11*FXP(-1*\$C\$1	2*A18	(B18-C18)2	=(B18-\$C\$4)	
	存在しない場	9 19	10.4	\$C\$10+(1-\$C\$11+EXP(-1+\$C\$1	[2*A19]	(B19-C19)2	=(B19-\$C\$4)	
	合は他地域の	19	10.4	\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	2*A20) =	(B20-C20) 2	=(B20-\$C\$4)	
	ものでも利用	19	129	=\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	(2*A21) =	(B21-C21) ²	=(B21-\$C\$4)*	
	可能。ソル 2	2 19	14	=\$C\$10*(1-\$C\$11*EXF(-1*\$C\$1	(2*A22)	(B22-C22)^2	=(B22-\$C\$4)	
	パーツールに	3 19	13.9	\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	(2*A23)	(B23-C23) ²	=(B23-\$C\$4)	
	より最終的な	19	72	\$C\$10*[1-\$C\$11*EXF(-1*\$C\$1	2*A24)	(B24-C24)2	=(B24-\$C\$4)	
	解に書き換わ	19	12.1	5C510+(1-5C511*EXF1-1*5C51	2*A25	(B25-C25) 2	=(825-\$C\$4)	
	90	7 10	8.4	-\$0\$10#(1-\$0\$11#EXP(-1#\$0\$1	2*A20)	(827-026) 2	-(620-\$0\$4)	
•	地位指数にカ	10	8	SC\$10#(1-\$C\$11#EXE(-1#\$C\$1	2*427	(B28-C28)'2	=(B28-\$C\$4)	
	イトカーフの	9 19	11.9	SC\$10*(1-\$C\$11*EXP(-1*\$C\$1	2*A29	(B29-C29) 2	=(F29-\$C\$4)	
	地位指数万示	19	96	=\$C\$10+(1-\$C\$11+EXP(-1+\$C\$1	2*A30] =	(B30-C30)2	=(B30-\$C\$4)	
	CILDo 3	19	122	=\$C\$10+(1-\$C\$11+EXP(-1+\$C\$1	(2*A31) =	(B31-C31)2	=(B31-\$C\$4)*	
_	3	2 19	7.4	=\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	(2*A32)	(B32-C32) 2	=(B32-\$C\$4)	
•	確度が高い林齢	3 19/	77	\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	(2*A33)	(B33-C33)^2	=(B33-\$C\$4)^	
	とLiDARから得	1	69	\$C\$10+(1-\$C\$11+EXP(-1+\$C\$1	(2*A34)	(B34-C34)^2	=(B34-\$C\$4)	
	られた上層樹高	19	64	\$C\$10*(1-\$C\$11*EXP(-1*\$C\$1	(2*A35) =	(B35-C35)2	=(B35-\$C\$4)	
	を入力する。	19	9.8	-3C510+11-5C511+EXPI-4-5C51	2*A36	B36-C3612		
•	上層樹高の選び			1145 5				
	方は作業6を奏			林齢とモテルパラメ	-30	 テータ 	着元の谷統計	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A. B. Kを引取とし	.7: 成長	値田の言	1 留式を入す	

ソルバーツールの設定の例を示します

ここでは、モデル式に対するサンプル値の残差平方和(セル C5)を最小とするようなパラメータ(K、 A、B)の最適解を求めるように設定しています

	目的ないの設定:(工)	ier.	¢¢	-	 データ諸元の ち和 (キぬづ)
				151	セル)を入力
デルバラメータの	目標値: () 最大値(<u>M</u>)	● 最小値(<u>N</u> → 提)	定値:(⊻)		
B、K(緑枠で	変数セルの変更:(<u>B</u>)			1-201	
ったセル)を入力 L る	\$C\$10:\$C\$12			1	
	制約条件の対象:(U)				
				追加(<u>A</u>)	
				変更(<u>C</u>)	
				削除(<u>D</u>)	
				<u> </u>	
			10°	読み込み/保存(L)	
	☑ 制約のない変数を非負勢	数にする(<u>K</u>)			-
	解決方法の選択: GRG (E)	非線形	5	オプション(<u>P</u>)	
	解決方法				
	滑らかな非線形を示すソル レックス エンジン、滑らかでは ださい。	バー問題には GRG 非 はい非線形を示すソル	線形エンジン、線形を示すソノ レバー問題にはエボリューショナ	いバー問題には LP シンプ リー エンジンを選択してく	

「解決」をクリックすると計算結果の表示とともに、設定シートのモデルパラメータの A、B、K が書き換わります

③ 精度の比較とモデルの決定

各式のシートの計算結果から「決定係数」「RMSE(二乗平均平方根誤差)」「AIC(赤池情報量 規準)」の3つの精度指標が算出されますので、最もあてはまりの良いモデル式を選択します(ガイド カーブの決定)

設定シートのモデルの林齢と推定樹高の値を用いて、樹高曲線(ガイドカーブ)の図や表が作成できます

採択された樹高曲線式をもとに、20mメッシュの林齢・上層木平均樹高をもとに、作業8の地位指数 の算出を行います

14. 作業 8:地位指 QGISでの作業 数分布図の作成 準備するデータ: ● 作業 5 で作成した樹高、樹種、林齢情報が格

作業5で作成した樹高、樹種、林 納された20mメッシュポリゴン

まず、各メッシュの地位指数曲線の係数Kを計算します。この計算には、ガイドカーブの係数A、B、 各メッシュの上層木平均樹高Ht、林齢を使います。次に、計算したKとガイドカーブの係数AとB、 そして各メッシュの林齢と樹高から地位指数を推定します。計算ツールはQGISの属性テーブル内フ ィールド計算機です。

以下、徳島県の地位指数曲線の係数を使った計算プロセスを示します。

① 地位指数曲線(ガイドカーブ)の係数の確認

20m メッシュごとのKの計算式

概要:	ミッチャーリ ドカーブの係	ッヒ式(上層樹高 Ht=A×(1-B×exp(-K 数A,B を使って各メッシュのKを算出	× 林齢 t)))	を使った	ガイ
前提:	標)が変動	する			
ガイドカー	ブ(中央線)の	の係数			
樹種	森林簿での 樹種コード	計算式	К	A	В
スギ	1	Ht=27.1209(1-0.9607exp(-0.026*t))	27.1209	0.960 7	0.026
ヒノキ	2	Ht=20.8915(1-0.9677exp(-0.0269*t))	20.8915	0.967 7	0.026

出典 スギ: [徳島県農林水産部林業飛躍局林業戦略課, 2012]、ヒノキ [徳島県農林水産部林業飛躍局林業戦略課, 2013]

K を求める計算式 K= Ht/(1-A*exp^(-B*t)) Ht:LiDAR DCHM(20m MAX) を入力 t: 森林簿林齢を入力

② フィールド計算機を使った樹種別の K の計算

Kの計算では、QGISのフィールド計算の"条件"を使います

20mメッシュ(林齢、樹種、上層木平均樹高(LiDAR 10m メッシュ最大値の 20m メッシュ平均値)を含むファイル)を QGIS で開きます

属性テーブルを開きます

フィールド計算機を開きます

QN	/lesh20_jushu_rinrei_c	dchmmax_nakaall_l	LiDARarea :: 地物数	合計: 460656、フィル	夕: 460656、 選択: 0		-
1		1 1 1 1 1	ê 📕 🚺 🔩	9 4 2 7	5 . V R		
	fid	id	left	top	right	14ールド計算機を開く	(Ctrl+I) Dce
1	1071408	11686559.999999	73729.72607545	82429.6489751268	73749.72607545	82409.6489751268	
2	1071434	11686586	73729.72607545	81909.6489751268	73749.72607545	81889.6489751268	

📿 Mesh20_jushu_rinrei_dchmm	nax_nakaall_LiDARarea — フィールド計	算機		6	×
選択されている0個の地物のみ夏 ✓ 新しいフィールドを作成	更新する	既存のフィールドを更新する			
□ 仮想フィールド作成 出力する属性(フィールド)の名前 フィールド型 フィールド長	K 小数点付き数值(real)				-
式関数エディタ					
CASE WHEN "JushuChm "DCEMalimajority" "Binreimajo" WH 3 THEN "DCEMalimajor -0.0269" "Binreimaj	naj" = 1 THEN (1-0.9607 exp(-0.026 HEN "JushuChmaj" = city" /(1-0.9677 exp to")) ELSE NULL END	 Q. (検索 データ構造(配列) ファゲルとバス ファゲーマッチング フィールドと値 ユーザー式 ラスタ レコードと属性 一般情報 満算子 型の変換 最近使った(fieldcalc) 式によるグルーブ化(集約) 条件 CASE coalesce if 	▲ ▲	式 CASE CASEは、複数の条件を評価し、条件が最初 に満たされる結果を返します。条件は順番に 評価され、trueが返されると、それ以降の評 価はされません。条件が一つも満たされない場 合、ELSEの値が返されます。ELSE節がない 場合、NULLが返されます。 CASE WHEN condition THEN result [n] [ELSE result] END	
 = + - / * 地物 1064480 フレビュー: 18.312516178060257 このレイヤに関する1 	○ () '¥n' ★ ● <td>nullif regexp_match try ・ 数学 モードではありません。OKをクリックすると、自動的</td> <td>コに編集モードになります。</td> <td>[] marks optional components 引数 meneric OK キャンセル ヘルレ</td> <td>-</td>	nullif regexp_match try ・ 数学 モードではありません。OKをクリックすると、自動的	コに編集モードになります。	[] marks optional components 引数 meneric OK キャンセル ヘルレ	-

新しいフィールドを作成:チェックを入れる
出力する属性(フィールド)の名前:K
フィールド型:小数点付き数値(real)
式【記入例】※ "" 内に入るフィールド名は例です
CASE
WHEN "JushuCDmajority" = 1
THEN "Htmean" /(1-0.9607*exp(-0.026* "Rinreimajority"))
WHEN "JushuCDmajority" = 2
THEN "Htmean" /(1-0.9677*exp(-0.0269* "Rinreimajority"))
ELSE NULL END
プレビューに計算結果が示されます
計算式が合っているか心配な場合は、ここで数値を確認してみましょう

OK ボタンを押します

Kという名前のフィールドが新しく追加されていることを確認してください

QN	lesh20_jushu_	rinrei_dchm	nmax_nakaa	ILLIDARa	rea :: 地物	数合計:4	160656, 71113	7:460656、選択	: 0						÷, i		×
1		18 10 -	- 8	8		. 7 3	9.01			9 0							
123 fid		3 = +	123										-	す	べて更新	選択	の更新
	fid	id	left	top	right	bottom	JushuCDcou	JushuCDmaj	Rinreicoun	Rinreimajo	haplin	DCHMallcount	DCHMallmajo	rity	K	-	Ψ.
1	1408905	13405406	82389.7	85709	82409	85689	1600	1	1600	1	N	4	42.5961303710	09	666.019	5177413	3
2	1408906	13405407	82389.7	85689	82409	85669	1600	1	1600	1	Na	4	42.5961303710	09	666.019	5177413	з
3	1412446	13425257	82489.7	85689	82509	85669	1600	1	1600	1	N	4	41.2268371582	20	644.609	5855018	8
4	1408907	1340540	82389.7	85669	82409	85649	1600	1	1600	1	N.,	4	40.19775390	625	628,5192	677758	8
5	1409613	13/09378	82409 7	85660	87479	85540	1600	1	1600	1	Ň	4	10 10775200	625	678 510	67776	8

③ フィールド計算機を使った樹種別の地位指数 SI の計算

K の計算と同じ手順で操作します。

計算式のフィールドには、ミッチャーリッと式であれば、

上層樹高 Ht=K×(1-A×exp(-B×林齢 t))

の式を記入します
プレビューに計算結果が示されます。計算式が合っているか心配な場合は、ここで数値を確認してみま しょう

WHEN "JushuCDmajority" = 1 THEN "K" * (1 - 0.9607 * exp(- 0.026 * 40)) WHEN "JushuCDmajority" = 2 THEN "K" * (1 - 0.9677* exp(- 0.0269 *40)) ELSE NULL END

計算式の例 ※ ""内のフィールド名は例です

CASE

/ 新しいフィールドを作成					
仮想フィールド作成					
出力する属性(フィールド)の名前	SI				
フィールド型	整数值(integer)			٠	
フィールド長	0	1		精度 3	
式関数エディタ					
CASE					
CAD					
WHEN "JushuCDmaj"	= 1				
WHEN "JushuCDmaj" THEN "K" * (1 - 0	= 1 .9607 *	ex	p(-	0.026	×
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo"))	= 1 .9607 *	ex	p (-	0.026	×
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj"	= 1 .9607 *	ex	p (-	0.026	*
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Bipreimajo"))	= 1 .9607 * = 2 .9677*	ex	p(-	0.026	
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) ELSE NULL	= 1 .9607 * = 2 .9677*	ex,	p(-	0.026	*
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) ELSE NULL END	= 1 .9607 * = 2 .9677*	exp	p(-	0.026	
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) ELSE NULL END	= 1 .9607 * = 2 .9677*	exp	p(-	0.026).0269	*
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) ELSE NULL END	= 1 .9607 * = 2 .9677*	exp	p(-	0.026).0269	*
WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) WHEN "JushuCDmaj" THEN "K" * (1 - 0 "Rinreimajo")) ELSE NULL END = + - / *	= 1 .9607 * = 2 .9677*	exp	p(- (- (0.0269).0269	

計算が終わりましたら、地位指数のフィールド(例では SI)が表示されているか確認しましょう

ここまでで地位指数が算出できました データをエクスポートしておきましょう ファイル名の例: *Mesh20 SI*

④ 地図化

レイヤのスタイルパネルで地位指数を数値レベルで色付けしてみましょう

森林簿林齢が実態と異なる場合、極端に大きな値または小さな値が出ることがあります

(例)

上図で使った色付けの設定

プロパティ> シンボロジ> 連続値による定義> 値: SI> シンボル: 透明なストローク> フォーマット: %1 – %2 > モード

地図が作成できたら、現地に詳しい方々に地位指数の分布傾向を確認して みましょう

15.活用 森林簿ポリゴンに 情報を付与 QGISでの作業 準備するデータ: 単備するデータ: ・ 地位指数分布図 ・ 地位指数分布図

航空機 LiDAR のデータから地位指数分布が作成できれば、森林簿とそれに付随する森林計画図に 地位指数を関連付けることで、森林簿の地位の精度を向上させ、より実態を反映した森林計画及び 森林施業の実施につながると考えられるます。

本節では地位指数の森林簿及び森林計画図との情報結合の方法について説明します。

操作手順としては、

- ① 地位指数をラスタ化する
- ② 森林薄ポリゴンにゾーン統計で最頻値情報を与える

となります。

① 地位指数のラスタ化

まず、森林簿ポリゴンと地位指数分布を QGIS で開きます

この時、森林簿ポリゴンと地位指数分布図の座標系が合っているか確認しましょう (6 準備 ページ 22~参照)

メインメニューバー> ラスタ> 変換> ベクタのラスタ化 をクリックします

1	
and the second	
200	
14	
al	
- 1	
11	
1 🚣	
- 0-1	
739	
1.1	
Page 1	
100	
140	
1 3	
1	
C.C.	
2	
-	
-	
140	
1.24	
128	
10	
100	
-	
0	
A	
8 .	
-5	
1 3	
No.	
144	
1. 1. 1.	
an and a	
100	
- Service	
ALC-ANT	
-	
a start	
1	
1.00	
1.42	
and the second second	
1	
AN	
100	
R.	
and the second second	
> 1	
1	

1-1-1

2 ベクタのラスタ化(rasterize)	×
パラメータ ログ	12
入力レイヤ	-
Mesh20_OhiiShisu [EPSG:6672]	- 3 -
選択した地物のみ	
焼き込む値の属性(フィールド) [オブション]	
(# SI	+
固定焼き込み値 [オブション]	
0.000000	(1) (¢)
出力ラスタサイズの単位	
地理単位	*
水平方向の解像度	
20.000000	(a) (+)
台直方向の解像度	
20.00000	(C) (C)
出力領域	
73580.0000,97800.0000,80680.0000,97440.0000 [EPSG:6672]	~
出力パンドに指定nodata値を割り当てる 【オプション】	
0.000000	個 🗧
▼ 詳細パラメータ	
追加オプション [optional]	
วิยวิราใน	
	A 30. 5
名前	值 (Value)
一番 一 検証 ヘルプ	
出力のデータ型	
Int16	+
指定値で事前に初期化する(nodataを防止する) [オプション]	
未設定	*
逆ラスタ化(最初の地物の値をそのポリゴンの外側に充填する)	
追加のコマンドラインパラメータ [オブション]	
22414	
butout/SI20m tif	-
✓ アルゴリズムの終了後、出力ファイルを開く 3DAL/OGR コンソールコール	
0%	年纪地ル
いチプロセスで実行	実行 閉じる ヘルプ

次のように設定します

入カレイヤ:地位指数を計 算した 20m メッシュのファイ ル

書き込む値の属性:地位 指数(SI)

出カラスタサイズの単位: 地理単位

水平方向の解像度:20m **鉛直方向の解像度**:20m

出力のデータの型: Int16

ラスタ化: 任意のファイル名を指定しましょう

例 SI.tif

② 森林薄ポリゴンにゾーン統計で最頻値情報を与える

ゾーン統計(ベクタ)で最頻値の地位指数を林 小班ポリゴンに付与します

まず、プロセシングツールボックス内のラスタ解析> ゾーン統計(ベクタ)をクリックします

ゾーン統計量出力:例 Shohan_SI

出力結果を確認します

レイヤで出力されたファイルを右クリックし、属性テーブルを表示します

1		2		4
	-	Sicount	Simajority	1
2248		40.00000000000	18.0000000000	
2249		14.00000000000,	22.0000000000	
2250		16.0000000000	25.00000000000	
2251		2.158767791724	17.0000000000	
2252		13.00000000000	24.0000000000	
2253		6.00000000000	17.0000000000	
2254		0.664071945389	16.00000000000	
2255	2	2,00000000000	33.0000000000	
2256	-	0.661480892201,	18.0000000000	
2257		0.520765395597	18.0000000000	
2258		2.00000000000	22.00000000000	
2259		4.00000000000	17.0000000000	
2260	ı	24.00000000000	21.0000000000	
2261		7.00000000000	22.0000000000	
2262		22.00000000000	18.0000000000	
2263		24.0000000000	18.0000000000	-
4			1	

フィールド名:

カウントの場合、先ほど設定した接頭辞 に count という文字が追加されて表記 最頻値の場合、先ほど設定した接頭辞 に majority という文字が追加されて 表記

林小班ポリゴンに地位指数の情報を付与しました。 色を加えて表示してみましょう

16. 留意事項

LiDAR データを使った地位指数の推定について、現地の状況とうまく一致しない場合があります。その場合、以下のようなケースが想定されます

LiDAR による上層木平均樹高が実際と一致しない

上層木平均樹高が現地よりもかなり過大また過小の場合があります。また、谷地形では、斜立木や根曲がりの影響で樹高が高く推定されることがあります。尾根地形の特にヒノキが優占する林相では、LiDARが地盤まで達しにくい傾向があり、凸地形をうまく再現できていない可能性もあります。

地位指数曲線が実際と一致しない

LiDAR のデータの上層木平均樹高と森林簿の林齢からサンプリングして地位指数曲線を作成する場合、既存の地位指数曲線よりも高めまたは低めになることや、現地とうまく一致しない場合があります。その場合、サンプリングの方法を見直してみましょう。目的の応じて利用できるデータを取捨選択する必要があり、スクリーニングしたうえでの無作為サンプリングにより現地と近くなると考えられます。サンプリングでは、以下を参考として再取得を試みてください。

- ✓ 地位指数曲線を LiDAR データで作成したい場合のサンプリング
- ✓ 林分蓄積の調査方法*にならった調査地の選定
- ✓ 選定条件
 - 県で一つの収穫表を作成する場合、全県からまんべんなくサンプリング
 - 齢級ごとにまんべんなく抽出
 - 林縁はとらない
 - 面積1ha 以上の小班を抜き出す
 - 小班の中で代表性があるところでとる
 - 谷部の局所的に樹高が極端に高い場所を避ける
 - 谷部、尾根部を避ける
 - 航空機 LiDAR 計測では、谷部で過大、尾根部が過小になる可能性あり。特に点密 度が低い場合は注意はその傾向が強くなると考えられる。 尾根部はレーザ光を透過しにくいヒノキが多いため地盤高が取りにくい傾向、対してスギ は意外に透過しやすい傾向がある。
 - 重要! 林齢が確実であろう箇所から抽出
 LiDAR から作成した平均樹高と森林簿の林齢に齟齬があるところはとらない。
 正しい林齢情報があればそれを活用。

作成した地位指数分布図が実際と一致しない

作成した地位指数分布図が、現地の傾向をうまく反映しない場合があります。その原因として、以下が考えられます。

- 森林簿の林齢が一致していない
- 森林簿の林小班ポリゴンが現地の林相と一致していない

林齢の修正は人的・予算的リソースが必要になることも想定されますので、可能な範囲で対応されることが望ましいと考えられます。

林班ポリゴンが現地の林相境界と一致していない場合、もし LiDAR 計測の成果品の中に林相境界ポリ ゴンが含まれていれば、このポリゴンをもとに20mメッシュ樹種分布図を作成することで望ましい結果が 得られる可能性があります。この林相ポリゴンを使う場合、別途林齢情報が必要になります。林齢情報を 取得する方法として、森林簿ポリゴンと LiDAR 林相ポリゴンの空間位置による情報結合があげられま す。

17.事例紹介

徳島県

航空機LiDARデータを使った 樹高成長曲線の作成(スギ)

80

100

地位指数分布図

40

20

60 林齢

狭域で見た地位指数マップ 谷・尾根スケールでの地位指数の把握

林融(下)

新潟県

※伊藤(2021):高齢級スギ人工林調査データを 用いた地位指数曲線の延長より引用

地位指数分布図

狭域で見た地位指数マップ 谷・尾根スケールでの地位指数の把握

地域的な地位の偏りはあまり見られないが 基本的には、谷で地位が高く、尾根で低い

広域に見た地位指数マップ 地域的特徴の把握が可能

[伊藤 塚原, 2021]

航空機LiDARデータを使った 樹高成長曲線の作成(スギ)

10 20 30 40 50 60 70 80 90 100

※茨城県スギ・ヒノキ高齢林分調査資料集(シス テム収穫表の調整)より引用

地域的特徴の把握が可能

狭域で見た地位指数マップ 谷・尾根スケールでの地位指数の把握

18.引用文献

伊藤幸介,塚原雅美. (2021). 高齢級スギ人工林調査データを用いた地位指数曲線の延長. 新潟 県森林研究所研究報告(61), 28-31.

田中博. (2019). 令和元年度森林情報士森林 GIS 部門1級・2級 テキスト 講義編. 243. 徳島県農林水産部林業飛躍局林業戦略課. (2012). 徳島県スギ林分収穫表. 徳島県. 徳島県農林水産部林業飛躍局林業戦略課. (2013). 徳島県ヒノキ林分収穫表. 徳島県. 独立行政法人森林総合研究所. (2005年3月). 平成16年度森林吸収源データ緊急整備事業 調査報告書. 39.

標準化事業検討委員会,解析・管理分科会,計測分科会. (2022). 森林資源データ解析・管理 標準仕様書案 Ver1.2.

航空機 LiDAR データを使った地位指数分布図の作成の手引き

令和4年3月 発行

林野庁

※ 本書の全部または一部を無断に転載することは、著作権法上での例外を除き、禁じられています。