強酸性土壌の山腹緑化工法について

岐阜森林管理署 荻野事務所 庄川治山事業所
主任 宗廣 克徳

1 はじめに
崩壊地や決壊を緑化することは、表土の浸食を防ぐなどの自然環境を保全する観点からも重要ですが、良好な結果を得るためには現地の諸条件を詳細に検討し工法を決定することが必要です。

当事業所では、大白川岩屑流堆積物を起源とする酸性土壌での緑化を検討するため、平成6〜7年度に、現地で採取した酸性土壌の異なる土壌に緑化工へ用いる反射的な草本類を播種し、その発芽・生育状況を観察しました。その結果は、図1のようにpH5未満の土壌では生育が悪く、pH3以下の酸性土壌では全く発芽しないことが明らかになり、酸性度の低い箇所では土壌改良や植物の生育基盤作り、酸性土壌への適応性の高い種子の選定等が必要との結論を得ました。

この結果を踏まえ、平成7年度に酸性土壌の面に生育基盤を形成する緑化工法として連続繊維高次生物工法を試験施工しました。本研究では、この施工箇所の植生形成状況を観察し、その効果を検証し、今後の課題を明らかにすることで、強酸性土壌地帯における緑化工法の確立に資することとしました。

2 概要

（1）試験施工箇所の概況（図2）
現地は岐阜県の北西部に位置する大野郡白川村の、大白川国有林内の治山工事施工場の切土法面で、標高は30mに位置し、法面勾配は1:0.6〜0.8、方位は北〜北西向きで、気象条件は、年平均気温10.4℃、年平均降水量2,336mm、年平均積雪深は185cmです。

（2）試験施工の概要

現地は、大白川岩屑流堆積物の浸食や地すべりに伴う崩壊地が数か点在しており、これまでにも緑化工法を検討するために小規模な種子吹付試験を行っていましたが、下記によって良好な結果を得ることが出来ませんでした。
①ＰＨ３以下の強酸性土壌である。
試験施工箇所一帯は、およそ4,400年前の白山頂上部の大規模崩壊によ
り発生した、大白川沿岸堆積物に覆われており、この堆積物は熱水変質
を受けて強酸性になっています。
②表土が流出し易いため、生育基盤の固定が難しい。
崩壊地斜面は殆どが熱水変質を受けた粘土が露出しており、乾燥時は非
常に堅く、降雨等で膨潤すると脆弱化し、表土流出が起こりやすくなって
います。
これらを踏まえ、このような箇所の緑化には、酸性に強く耐浸食性的両面を
持つ、植物の生育基盤が必要であると考え、厚層吹付の一種で連続繊維高
次団粒工法を選定し、酸性土壌工法に試験施工しました。
（3）工法の概要
連続繊維高次団粒工法の特徴は、有機泥状基材と団粒剤を混合して吹き付け
することにより、透水性や保水性が高く、高次団粒構造を持つ生育基盤を形成す
るとともに、粘着性の植物繊維を混入することにより、生育基盤を通常の厚層
基材よりも長く保持できることです。
試験施工は、施工工面にラス金網を敷設し、生育基盤に植物種子と粘着性の
植物繊維を混入した材料を5cm厚で吹き付けました。

<table>
<thead>
<tr>
<th>h a 当たりの実播材料明細表</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料名</td>
</tr>
<tr>
<td>ヤマハツノキ</td>
</tr>
<tr>
<td>種</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

（図3）

写真1（全景）
写真2（近景）
3 調査方法（写真1、写真2）
横模1mのプロットを設け、プロット内に生育する植物種と、その個体数、地上部及び根糸の発達状況、並びに土壌の性状を調査しました。

4 調査結果
（1）生育する植物種、個体数等
図4は、プロット周囲における植生種及び個体数を示したものでです。施工後7年が経過し、木本は、導入種のヤマハニノキ、ヤシブシが数本2〜3m程度に生育し上層を形成しており、下層には、ヤマアシサイ、ミズメ、ノリウツギ、ヒノキ、カツラが生育しています。
また、プロット外ではブナ、タケカンバ、ヤナギ類、カエデ類などが進行しています。
草本類では導入種のメドハギが生育しています。プロット外には導入種のススキが生育しているほか、フキ、シダ類などが進行しています。
尚、導入した外来草本は、予定通り衰退し、現在は殆ど見られませんでした。

<table>
<thead>
<tr>
<th>植 生 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>植物種</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>ヤシブシ</td>
</tr>
<tr>
<td>ヤマハニノキ</td>
</tr>
<tr>
<td>ヤマアシサイ</td>
</tr>
<tr>
<td>メドハギ</td>
</tr>
<tr>
<td>ミズメ</td>
</tr>
<tr>
<td>ノリウツギ</td>
</tr>
<tr>
<td>ヒノキ</td>
</tr>
<tr>
<td>カツラ</td>
</tr>
</tbody>
</table>

（図4）

（2）地上部及び根糸等の発達状況、土壌の性状
①地上部及び根糸等の発達状況
図5は、地上と地下の植生乾燥重量を示したものでです。根糸の発達は地表から20cmの深さまでに確認できますが、20cmよりも下はほとんど見られません。また、地上部の植生樹高は最大350cmまで成長しているものがあります。

（図5）

②土壌の性状
図6は、各土質層の様子で、地表から5cmまでは落葉落枝が主でPIIは
3 考察

（1）工法の効果

調査地には、目的とする植生が形成しつつあり、また多の進入植物が確認されたことから、酸性土壌の土に高次構造の生育基盤を形成し緑化を図る本工法は、一定の効果があると考えます。

（2）今後の課題

①湧水の多い箇所では暗渠等による排水対策を実施

調査地付近の湧水はPH2.92と非常に酸性度が高く、このような湧水が多い箇所では、生育基盤が強い酸の影響を受け植物の生育が今のことろ難しいです。

実際に本工法を施工した現場にある湧水箇所では、吹き付け材料の酸性化及び種子流失等で植物がほとんど生育していない箇所が見られます。また、ここでは、ラス金網の腐食も見られ、酸性度の高さを実証しています。

このような、湧水が多い箇所では、本工法を行う前に暗渠等による排水対策を実施する必要があります。

②自生植物種と酸性度の関係及び根系の発達状況の調査

地表下15cmよりも深いPH3以下の土壌は、根系の発達が現在は見られず、表面が急勾配であることからも、この工法で長期に渡り植物を固定することが可能か否か検証する必要があります。また、付近には、ブナ等の高木が多数生育していることから、自然植生の根系の発達状況を調査し、植生の発達と土壌の関係（風化の進行等）、自生植物種と酸性度の関係等を調査検証する必要があります。

4 結わりに

今後、試験施工地の奥田にて同様地質の山腹工を予定箇所もあり、既設山腹工及び継続山腹工の経過を観察しながら、強酸性土壌の山腹緑化対策として生かせるよう取り組んで参りたいと思います。

また、本研究の対象地を含む大白川は、ブナ等の天然林が広がる国立公園の中であることから、生態系の点でも、景観上も原生的な自然に一層染め易い工法の採用を目標に掲げ、今後の業務に活んで参りたいと思います。

最後になりましたが本研究を行うに当たり、岐阜大学の小見山教授、加藤助之助の両先生にご協力いただきました。