Forest Technology · Support Center



平成29年3月発行

林野庁中部森林管理局 森林技術・支援センター 〒509-2202 岐阜県下呂市森876-1

TEL 0576-25-3033

http://www.rinya.maff.go.jp/chubu/gijyutu/

平成29年1月31、中部森林管理局主催の発表会において1課題を発表しました。

○多様な森林づくり施業について -ヒノキ人工林除伐省略試験の事例-

○森林技術・支援センター 森林技術普及専門官 三村 晴彦

一般職員

堤 隆博

### 要旨

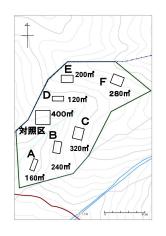
植栽後 10 年を経過したヒノキ単層林において、侵入広葉樹を保残し森林の多様性を高めるため、植栽木に配慮する中で部分的に除伐を行わない試験を、平成 19 年に設定し 10 年目を迎えることから、植栽木と侵入広葉樹の生育本数や生長量について調査を行いました。今回の試験により IV 齢級程度までは、植栽木と共に侵入広葉樹を育成することは可能と考えられますが、今後植栽木の本数調整を行 うなど試験を更に推し進めることとしています。 はじめに

平成 28 年 5 月に新たな森林・林業基本計画が策定され、森林の有する多面的機能の発揮に関する目標の中で、単層林の取り扱いについては 3 つのタイプに分け、その誘導の考え方として、林地生産力が高い場所については単層林を維持し資源の充実を図り、林地生産力の低い場所は複層林化し、公益的な機能が期待される場所は針広混交林及び天然生林に表現することとし、森林の機能を発揮する。 る上での望ましい姿が示されました。国有林においては、針広混交林等の育成複層林への誘導並びに再造林の低コスト化について先導的に取り組むこととされ、各現場において、その地域の特性を活かしながら天然力を活用した多様な森林づくりを円滑に推進することが求められています。森林技術・支援とグラー(以ばはかに行うという)では、このような時代のニーズに対応する中で針広混交 林の造成試験を継続的に行っています。

### 試験地の概要

試験地は、図ー1のとおり、岐阜県下呂市馬瀬、 本洞国有林 1049 ほ林小班に位置し、林況については、 面積: 2.22ha、標高: 940~ 1050m、斜面方位: 南西、 林地傾斜:33°、地位:6、土壌型:BD、地質:流 紋岩、下層植生:ササ・かん木となっています。機 能類型は水源かん養タイプで、将来の施業群は人工 林複層伐と定めています。法令関係は、水源かん養 保安林、鳥獣保護区普通地域及び馬瀬渓流魚付き保 全林に指定されています。

試験の目的は、植栽木に配慮し部分的に侵入広葉 樹(以下「広葉樹」という)を保残する除伐方法を 用い、植栽木と広葉樹の生長状況等を比較すること により、単層林を針広混交林へ導く手法確立への一 助とすることとしています。




施業経過は、平成9年にヒノキを3,000本/ha 植栽し、平成9~14年まで計6回下刈を全刈りにて実施の後、平成19年に除伐を部分的に帯 図-1 位置図

状で実施し試験地設定を行いました。対照区については、1 年遅れた設定となり、除伐を平成 20 年 に実施しています。

に実施しています。 調査プロットの配置は、図-2のとおりで右側は20年前の植栽時の衛星写真です。各プロットについて、横幅はすべて20mで、広葉樹の保残幅と除伐幅の違いにより面積が異なり、面積はAが160㎡、Bが240㎡、Cが320㎡、Dが120㎡、Eが200㎡、Fが280㎡、対照区はすべて除伐を行い400㎡となっています。図-3は試験パターン模式図です。1帯の幅は2mで緑色が広葉樹保残帯(以下「保残帯」という)です。A~Cが2帯、D~Fが1帯保残で保残幅が狭いように感じますが、これは植栽木の生育に配慮したものです。除伐幅を、2伐、4伐、6伐の3パターンとした結果、保残帯との組み合わせによりともの広葉樹保残率(以下「保残率」という)は、Aが50%、Bが33 %、Cが25%、Dが33%、Eが20%、Fが14%となりました。

## 調査プロットの配置





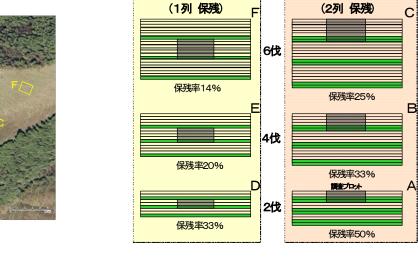



図-2 プロット配置図

## 2 調査の方法

図-3 試験パターン模式図

平成 28 年 11 月にヒノキと樹高 1.5m 以上の広葉樹のについて、胸高直径、樹高に加え、広葉樹については樹種も調査しました。調査道具は、胸高直径はステンレス輪尺(mm単位)、樹高は試験当初、メモリ付き樹高桿(m単位)にて測定を行いましたが、平成 28 年には 10 mを超える調査木があったことからバーテックス(10 m単位)に切り替え測定しました。

写真-1は、平成19年10月の試験設定当初に撮影した、植栽から10年が経過した試験地全景で、 除伐箇所の帯が確認できます。写真-2は、平成28年11月の調査時に撮影した、植栽から20年を 迎える試験地で生育の状況が確認できます。





写真-1

写真-2









写真-3

写真-4

写真-5

写真一6

写真 $-3\cdot4$  は、試験当初における調査プロット内の様子です。写真-3 は除伐箇所でヒノキと林床はササが確認できます。写真-4 は保残帯で紅葉により広葉樹が確認できます。写真 $-5\cdot6$  は、平成 28 年 11 月のAプロット内で保残率 50 %の写真です。写真-5 は除伐箇所でヒノキのみが写っています。写真-6 は保残帯で左にあるのはミズナラです。写真-7 は同じくAプロット内の低木広葉樹の生育状況です。写真 $-8\cdot9$  は、平成 28 年 11 月の F プロット内で保残率 14 %の写真です。写

真-8は除伐箇所でヒノキのみが密に生育しています。写真-9は保残帯で広葉樹も確認できます。



写真-7



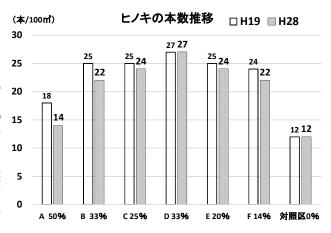
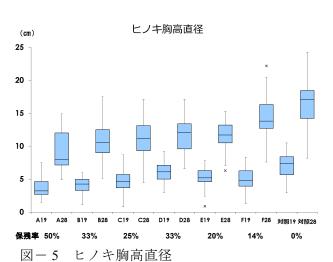
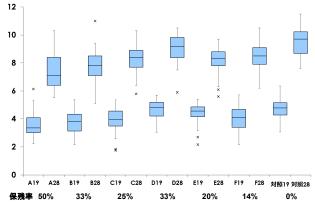
写真-8

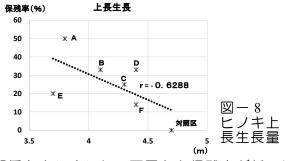
(m)

写真-9

# 3 調査結果及び考察 (1)ヒノキ植栽木の動態

各プロットにおける、ヒノキ植栽木の 100 ㎡当 たりの本数推移を図ー 4 に示しました。Aプロットと対照区は他のプロットと比べ疎林分・ヒノキや、立葉樹の生育に与える影響が大きいと考えられ、単純な生長量の比較には注意が必要です。平成 19年と平成 28年のヒノキの胸高直径及び樹高した。平と平成 28年のヒノキの胸高直径及び樹高した。中見すると保残率が低い、すなわち除伐率が高いと見えますが、平成 19年 にど生長しているように見えますが、平成 19年 なけられることとの表別的な生長の傾向が無いことから、地位の影響が高いと考えられます。



図-4 ヒノキの本数推移





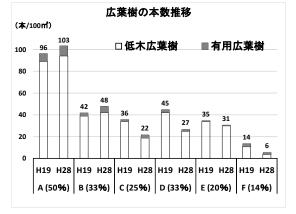
ヒノキ樹高

図-6 ヒノキ樹高



図ー 7・8 は、各プロットのヒノキの生長量と保残率の関係を表しました。両図とも保残率が低いほど生長が良い負の相関がありました。局所的な地位の影響も考えられますが、特に肥大生長は強い相関があることから除伐がヒノキを太らせる効果が現れていると言っても過言では無いと考えます。各

プロット毎の形状比を表一 1 に比較しました。保残率が高い区は、比較的形状比も高くなっています。ことは、除伐は健全なヒノキの育成に効果が高ることが記されての多様性を考えた場合、幹を放らせるの発性を考えた場合がいると推察でき、針広混交林における針葉樹育では、とばは必要であると考えられました。全体の平均に高域にがあるといるでは、とはでは、というでは、低コストを踏まえいと考えられました。(2)広葉樹の動態

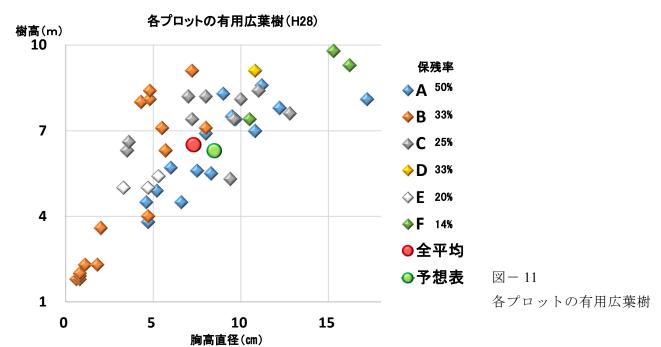

除伐を省略したことによる広葉樹の本数推移を図ー9に示しました。広葉樹の主な樹種は、低木がマルバノキ、コシアブラ、シロモジ等で、高木の有用広葉樹は、クリ、ホオノキ、ミズナラ等でした。保残率50%のAプロットは他のプロットとの本数比較で2倍以上と2000円である。

出しています。図- 10 のとおり、保残率と本数には強い相関があることから、現時点においては除伐省略により広葉

| 区分    | <b>保残率</b><br>(%) | 胸高直径<br>(cm) | 樹 高<br>(m) | 形状比<br>(%) |
|-------|-------------------|--------------|------------|------------|
| Aプロット | 50                | 9. 3         | 7. 5       | 81         |
| Bプロット | 33                | 10. 7        | 7. 8       | 72         |
| Cプロット | 25                | 11. 2        | 8. 3       | 74         |
| Dプロット | 33                | 11.8         | 9. 1       | 77         |
| Eプロット | 20                | 11.6         | 8. 2       | 71         |
| Fプロット | 14                | 14. 3        | 8. 4       | 59         |
| 対照区   | 0                 | 16. 4        | 9. 5       | 58         |
| ヒノキ計  |                   | 9. 1         | 6. 3       | 69         |
| 予想表   |                   | 12. 4        | 8. 4       | 68         |

表-1 各プロットのヒノキ形状比

樹育成が可能と考えられました。2 帯の保残で保残率の高い A・B プロットで広葉樹が増加し、他のプロットでは減少傾向となっています。広葉樹の増加については、光環境が良好な状態であることが考えられ、図ー 4・6 のとおり、A・B プロットのヒノキ本数が少ないことや、ヒノキ平均樹高が低いことが考えられました。逆に D・F プロットはヒノキ本数が多いことや、平均樹高が高いことが広葉樹の減少に繋がった可能性が考えられました。今後、低木の広葉樹については、全てのプロットで上層木が生育することで光環境も悪化し衰退していくものと推察できます。




保残率(%) 保残率と本数の関係 60 50 ••••• 40 r = -0.91894230 20 10 0 0 50 100 本数(本)

図-9 広葉樹の本数推移

図-10 保残率と本数の関係

図-11に、各プロット全ての有用広葉樹を示しました。縦軸は樹高で横軸は胸高直径です。



| 区分    | 胸高直径<br>(cm) | 樹 高<br>(m) | 形状比<br><sup>(%)</sup> |
|-------|--------------|------------|-----------------------|
| 有用広葉樹 | 8. 2         | 7. 2       | 88                    |
| 予想表   | 8. 5         | 6. 3       | 74                    |

表-2 有用広葉樹の形状比

# 各プロットのヒノキと有用広葉樹の樹高

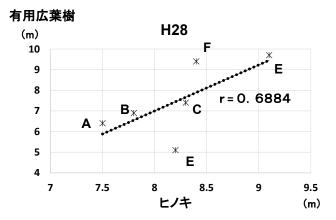



図- 12 ヒノキと有用広葉樹の樹高

この図で、各プロットの全ての有用広葉樹の生 育状況が分かります。表一 2 のとおり、有用広葉樹の全平均における形状比を、この流域にお ける予想表の形状比と比較した結果、有用広葉 樹が高い数値となり、ヒノキ林の中で十分に枝が張れず、上方へ細長く生育する傾向が感じられます。各プロットのヒノキと有用広葉樹の樹 高の関係を図ー 12 に示しました。ヒノキと有用 広葉樹の樹高には相関があり、局所的な地位の影 型には 響が窺えます。IV齢級の時点で、ヒノキと有用広 葉樹互いに上長生長を競いあっている中で、樹高 の明らかな優劣があるわけではありませんが、形

状比ではヒノキは良好であることに対し、有用広 葉樹は形状比が高く肥大生長が十分でないと考えられました。下刈が終了した時点から十数年でヒ ノキに樹高が追いついていることを考えると、今 後更に上長生長しヒノキを被圧すると推測できま 

今回の試験では、ヒノキ単層林において植栽木 に配慮した部分的な広葉樹保残により、√齢級の 現時点で広葉樹を育成することが可能と考えられ しかしながら下層の広葉樹は、一部を除 きすでに減少傾向となっており、今後上層木の生 育と共に衰退することが予想されます。また、ヒ ノキとの競争により光を求めて上長生長する広葉 本来の枝を張る樹形に誘導することは非常 に困難であると考えられます。この試験における 針広混交林誘導への背景には、 魚付き保全林とし て機能を十分に発揮させることが目的であり、 層の広葉樹を育成することが重要であると同時に

有用広葉樹も十分に枝を張らせ幹を太く育成することが求められるとともにヒノキもしっかり太らせ ることが必要不可欠なことから、育成段階の適正な密度の把握が必要であり、場合によっては、植栽 木の大胆な本数調整を行うことも必須となり得ることが予測されます。

この事例は試験的な広葉樹の帯状保残としていますが、事業的には実施に手間がかかるため、まと まった面的な方法が望ましいと考えられ、除伐省略の低コスト施業による多様性の高い森林造成に向 ての施業体系化が今後の試験課題となっています。

広葉樹は、個体の林地専有面積が広く単木での針広混交は困難であると考えており、植栽時からの 検討が重要と考えられます。林地の状況を見極め、部分的に植栽木の粗密区分を行った植栽方法を用いることも手法の1つと考えられます。また、間伐を迎える時期になれば、利用目的に応じた広葉樹の将来木施業も取り入れる必要があると考えています。 当センターにおいては、今後多様な森づくりに向けて試験を継続するとともに、異なる箇所において、列状間伐により環境を改善し広葉樹の更なる侵入を促すことを目的に新たな試験を開始し、様々なおまず、分表で表す。

- 夕を収集・分析を行うこととしています。 な視点からデ

岐阜労働局から新任の労働基準監督官の実地訓練として林業の現地を勉強させてほしいとの協力依頼があり、11月8日に6名の訓練生を受け入れました。三村森林技術普及専門官から、伐倒の方法・か かり木処理・集材機集材について模型を使った説明を行い、訓練生からは、安全なかかり木処理や、集 材装置の動き等について活発な質問がありました。



伐倒方法説明の様子



模型を使った集材説明の様子

署七宗国有林において「ニホンジカ食害防除対策検討会」を開催しました。 ニホンジカの食害に対しては、くくりワナや囲いワナによる個体数調整が実施されていますが、 造林地へニホンジカを侵入させない、あるいは食害を防ぐための防護対策についても、低コストで 効果が期待できる技術開発が必要となっています。

このため岐阜県、関係市町村および国有林が情報共有を図り、意見交換を行うことにより、この地域において、より効果的な対策を行うことを目的として募集したところ、岐阜県(林業普及指導 員)をはじめ約40名の参加がありました。

はじめに屋内検討会として岐阜県森林研究所の岡本専門研究員から「ニホンジカ対策の現状と課題」について、岐阜署松嶋総括地域林政調整官から「国有林におけるニホンジカ対策」についての 講義、午後は会場を七宗国有林に移し、三村森林技術普及専門官の説明でシカ対策試験地の見学と 岐阜署松嶋調整官によるくくりワナの説明及び実習を行いました。 参加者からは「初めてくくりワナに触れたが職員捕獲は容易なことではない」「防護ネットのコストや耐久性が課題」等活発な意見がありました。 民国共通の課題としてのシカ対策に今後も連携して取り組んでいくこととしています。



会場の様子



くくりワナ設置の実習



県内のニホンジカ被害の状況



模型によるワナへの踏み込み



平行張りネットによる区域防護



立木を利用した垂直張り