直轄地すべり防止事業「銅山川地区」

技術検討会(第2回)

資	料	1	議	事	次	第		出	席	者	名	簿		
資	料	2	出	席	者	座	席	表						
資	料	3	課	題	と	方	針							
資	料	4	検	討	結	果	説	明	資	料				

平成23年8月4-5日

東北森林管理局

直轄地すべり防止事業「銅山川地区」技術検討会(第2回)

日 時:平成23年8月5日(金) 8:50~11:30

場 所:肘折温泉 いでゆ館 ゆきんこホール

議事次第

1. 開 会

8:50

(9:00 **)**

(9:00 **)**

9:40

【 11:20 】

[11:30 **]**

- 2. 主催者挨拶
- 3. 出席者紹介
- 4 資料説明及び討議
- (1) 調査結果説明
- (2) 討 議
- 5. 今後の予定等
- 8. 閉 会

直轄地すべり防止事業「銅山川地区」技術検討会

第2回出席者名簿

区分	氏名	所属	職名	適用
	井良沢道也	岩手大学農学部	准教授	
	岡本 隆	森林総合研究所東北支所	主任研究員	
	宮城 豊彦	東北学院大学教養学部	教授	
委員	八木 浩司	山形大学地域教育文化学部	教授	*以上 50 音順
	佐藤 新	山形県森林課	課長	代理出席 藤井博喜森林技術主幹
	加藤恒雄	大蔵村	地域整備課長	
	石田祐二	東北森林管理局	森林整備部長	
オブザーバー	中村三郎	防衛大学校	名誉教授	
	目黒 剛志	東北森林管理局治山課	治山技術専門官	
	黒川栄	"	設計指導官	
東北森林	松橋 勝弘	"	民有林治山係長	
管理局	杉崎 浩史	山形森林管理署最上支署	支署長	
	石井 利彦	"	治山課長	
	藤田尚	"	治山技術専門官	
	田畑 三郎	国土防災技術株式会社	理事	
	山崎孝成	"	技術本部長	
	広瀬伸二	"	東北支社長	
	山科真一	"	山形支店長	
	丹 四郎	"	山形支店次長	
	鈴木 亘	"	山形支店係長	
	山本美樹	"	山形支店係長	

資料1

第2回技術検討会 座席表

オブザーバー	- 東北梨	森林管理局		事務局	
防衛大学校	山形森林管理署	東北森林管理局	国土防災技術(株)	国土防災技術(株)	国土防災技術(株)
名誉教授	最上支署支署長	治山技術専門官	山形支店長	山形支店係長	東北支社長
中村三郎	杉崎浩史	目黒剛志	山科真一	鈴木 亘	広瀬伸二

最上支署	最上支署	東北森林管理局	東北森林管理局
治山技術専門員	治山課長	設計指導官	民有林直轄係長
藤田 尚	石井利彦	黒川 栄	松橋勝弘

|--|

	一般席		

<主な検討項目(第1回検討会資料 p.3)>

1.	全体ブロックの概成計画
	① 地すべりの立体的構造と安定が
	② 地下水文状況の検討
	③ 対策工施工の効果を検証
	④ 全体ブロックの対策
2.	小ブロックの概成計画
	① 全体ブロック縁辺部ブロック
	② 古水川沿い小ブロックの対策
3.	概成後の監視体制の検討
	① 対策工効果判定と概成後のモ
	② 防災体制構築のための基礎デ

<第2回検討資料目次>

 第1回検討会の要旨と指摘事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•
 2. 地すべり動態(観測結果)	•
 地下水分布と水収支	
 4. 地すべり発生機構の再現 4. 1 すべり面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

解析

の対策

ニタリング計画 ータ提供についての検討

•		•	• •	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•		•	•		•	•		•	•	•	1	
•		•	• •	• •			•		•			•				•		•	•		•	•		•			•		•	•		•	•			•	•	1	
		•					•											•						•			•			•								1	
																																						2	
																																						2	
																																						4	
																																						6	
																																						0	
																																						0	
		Ì					Ì										•		Ċ				Ċ	Ì	·	Ċ		·	•	Ì	·		Ì		Ċ		•	9	
•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•		·	•	•	·	•	•	•	•	•	•	9	
+				,		、	1	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•	•	1	•	•	•	•	•	•	•	•	•	•	•	•	•	9	
È	芣	1	ጌ	Ļ))		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		0	
•	•	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	2	
•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	1	3	
•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	5	
•	·	•	• •	• •	•	·	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	·	·	•	·	•	·	·	•	•	·	·	•	1	5	
•	·	•	• •	• •	•	·	·	•	•	÷	•	•	÷	•	•	•	·	•	·	•	•	•	•	·	·	·	•	•	•	·	•	•	•	·	·	•	1	6	
•	·	·	• •	• •	•	·	·	·	•	÷	·	·	÷	·	·	•	·	·	•	·	•	·	•	·	•	•	·	•	•	·	•	•	·	·	•	•	1	7	
•	·	•	• •	• •	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	7	
•	•	•	• •	• •		•	•	•	•	•				•		•		•	•		•	•		•			•		•	•		•	•		•	•	1	8	
		•	• •	• •			•		•							•		•	•			•		•			•		•	•		•	•			•	2	21	
		•		• •			•		•							•		•	•			•		•			•		•	•		•	•			•	2	21	
		•					•											•						•								•					2	22	

● 直轄地すべり防止事業「銅山川地区」技術検討会の課題と方針

● 旦 晤	上の	, ~ 丶 [夕	リビ	┘╨╹╴	<u>尹未「驷山川地区」12111(</u> 次前云♡)
		-11			
					(Ⅰ/ 尹禾天旭V/埜仲刀町 1) 保全対象との関係
					平成8年融雪期に発生した大規模地すべりの復旧を図るとともに、本事業を実施することにより荒廃した森林等を復旧し、直下の定区域内を走る国道458号及び村道等の公共施設、下流域の人家農耕地等への被害を未然に防止し、地域住民の民生安定を図る。
					2) 直轄施工の理由 寒風田地区及び南山地区は、それぞれ昭和57年、59年に地すべり防止区域の指定を受け、山形県で地すべり防止事業を実施 とから事業区域が拡大し、事業規模が大きく、高度な技術を要することとなり、県・大蔵村から要請を受け、平成4年度に国の直轄 べり防止事業を進めてきた。
現行	·の基	本方	飰		大規模地すべりにより大規模ブロックが拡大し、古口層上面付近をすべり面とする南山、湯ノ台にまたがる約130haが滑動して 超と厚く、地下水の涵養源となっている可能性が高い。 当地区が豪雪地帯であり、かつ、融雪期が長期にわたることから、この期間の地下水位が異常に上昇し地すべりの誘因となってい 固定を基本的対策工として安定を図ることとしている。 また、当面は寒風田及び南山地区の地下水排除を主体工事とし、あわせて国道周辺の山腹の安定、古水川沿いの小ブロックの安知
					2)寒風田地区
					平成8年度からポンプによる強制排水工を実施してきたが、トンネルの支線ごとの完成にあわせて落とし込みボーリングを実施す
					3)湯ノ台地区
					地すべり冠頭部に施工した落とし込みボーリグにより全体ブロックの安定を図り、古水川沿いの小ブロックの安定を図るため、
					(1)全体ブロックの概成計画(長期安定性評価手法の妥当性)
甘木士社日古」の士白州		u l:/1	① 地質,地下水・湧水調査を基礎とした再現精度を高めた三次元地下水解析による長期の水圧分布予測,そして,すべり面構造・地 安定解析(RBSM:剛体バネモデル)を用いた実態に近づいた地すべり安定度評価の組合せにより,全体ブロックの長期安定性を評		
本个 力 如	基本万針見直しの万回		カロ	1 <u>1</u> ±	② 全体ブロックの対策を①の手法により計画する。
				(2)小ブロックの概成計画	
					(3)概成後の監視体制の検討
	1回	2回	3回	4回	
					① 事業概要
					② 地すべり概要
					③ 地すべり発生機構の把握内容は妥当か。
					 ・地質条件
					・水文条件 は、A A A A A A A A A A A A A A A A A A A
					・地すべり動態
					・すべり面の把握
整理すべき					(4) 観測結果が地すべり先生機構の解析に反映され、ての条件、結果が整合しているが。 ・三次一連添海艇折
課題					· RBSM
					• · · · · · · · · · · · · · · · · · · ·
					<u>・</u> 全体ブロックの小ブロック化の発生機構と対策の必要性検討
					 ・古水川ブロックの発生機構と対策の必要性検討
					 ⑥ 概成後の監視体制
					・対策工効果判定と概成後のモニタリング計画
					・防災体制構築のための基礎データ提供についての検討
-					⑥ 概成全体計画書

資料3

の一級河川銅山川及び水力発電施設、配電施設、指

してきたが,平成元年に湯ノ台地区が指定されたこ 轄指定を行い,以来,東北森林管理局において地す

ている。本地すべり地を覆うシラスは最大100m いるため、地表水の処理、地下水の排除及び斜面の 定を図ることとしている。

する。

山腹工及び集水井工等を計画する。

2質に応じたすべり面せん断強度の設定による三次元 評価する。

第1回検討会の要旨と指摘事項

1.1 第1回検討会の内容

1 調査地概要

1.1 調查位置, 1.2 社会的条件, 1.3 地形, 地質 ほか

3 事業の経緯

2.1 平成3年度以前の全体計画 2.2 平成 4 年度全体計画 2.3 平成 12 年度検討委員会による計画

3 地すべり概要

3.1 平成 8 年被災時の状況 3.2 全体ブロック地すべりの概要 **3.3**対策工計画と進捗

4 安定解析手法の検討

4.1 検討した安定解析式の概要 4.2 安定解析式の適用

5 銅山川地すべりの長期安定性評価

5.1 評価手法に関する調査結果

- 5.2 銅山川地すべり長期安定性評価の考え方
- 5.3 平成 22 年度検討結果(中間段階)

1.2 指摘事項

- (1) 水収支, 地下水
 - ① **地下水の変化**に対しての説明が不足している。**水収支**とあわせて追加説明が必要。 ② 泥水沢の自然排水と対策による排水の比率はどれくらいか。

(2) 地すべり動態

- いても想像がしやすくなる。
- といったものは設置されていないか。
- ③ 水位変化との移動のタイミングの関係はどうなっているのか
- ④ 移動に関するデータはGPSのみであるが、地中の動きを示すデータを示すこと。

(3) 安全率, 地下水排除効果

- ① RBSM と浸透流解析の組合せによる長期安定性の評価を行った場合. 目標安全率 1.2 にこだわ 合せにより、より高い安全性が確保されるのではないか。
- いるか否かである。つまり,移動量が最も大切な要因で,どの程度の雨量,水位に対して動か せれば、必ずしも従来の手法による必要はないのではないか。
- ③ 地下水排除工の効果を過去から現在まで示すこと。
- 定の理解が得られた。
- ⑤ 動きがこれまでの対策によってどのように変化してきたのかを示すこと。

(4) モニタリング

- 要である。
- ② 概成後の対応は保全対象の重要性に比例して変化する。
- ③ 概成後の長期的な監視にはSARなどの監視も有効である。
- ④ 対策とモニタリングをうまく組み合わせて安全・安心を確保する必要がある。

① ブロック内が圧縮域にあるのか引張域にあるのかといった空間データがあると水の動きにつ

② 移動量の指標として地表のGPSのほかに**地下の動きを捉えるパイプひずみ計**,孔内傾斜計

らなくても、安全性は確保できるのではないか。また、シミュレーションとモニタリングの組 ② 安定解析は、ある仮定の元で目標に達しているのかを判断するもので、唯一の事実は動いて

ないのかが重要である。三次元解析により評価し、水位についても確率論的な評価を組合あわ

④ 銅山川地すべりで RBSM と浸透流解析を組み合わせた安定性の評価手法で検討することに一

① 新たな手法は未確定な部分があるため、不足を担保するために施工後の監視体制が非常に重

2. 地すべり動態(観測結果)

2.1 地中変位(ひずみ計)と地表面変位

図 2.1にボーリング孔位置図を示した。RBSM(三次元安定)解析の際に区分した,移動方向の変化に対応している地形区分によるエリア (upper, middle, lower) ごとに地すべり動態に関するデータを整理した。

図 2.2 ひずみーGPS変動図 (upper)

資料4-3

図 2.4 ひずみーGPS変動図 (lower)

2.2 地表面の移動方向(GPS)

(1) lower

図 2.5 GPSベクトル図 (GP.02)

① 1996 (H8) 年の地すべり活動以降,強制排水工が進捗にあわせて,2000 (H12) 頃までは、ひずみ(地中)の累積がみられ、この間は GPS(地表)でも確認されて いる。

くひずみ計観測(地中移動量)結果>

- ② 2000 (H12) は, upper, middle, lower の各エリアでひずみの累積が確認され, これに対応するように GPS の変位も確認されている。
- ③ 強制排水工が停止した 2005 (H17) も,各エリアでひずみの累積, GPS の変位が 確認され、全体ブロックの滑動が確認された。
- ④ upper エリアの EW-6 は 2005 以降にも変位がみられる。同一エリアの他孔による 変位はみられず, middle エリアの変位もないことから, ブロックとしての変位は考 え難い。
- ⑤ 一方, lower エリアでは, M-7-1N のみが変位を記録している。小ブロック化の可 能性があり、注意を要する。

図 2.8 GPSベクトル図 (GP.07)

図 2.9 GPS変動ベクトル図 (GP.08)

North

図 2.12 GPSベクトル図 (GP.10)

図 2.10 GPSベクトル図 (GP.09)

図 2.11 GPSベクトル図 (GP.11)

エリマ	Na	ブロック内	観	測	水平変位	<u>量(</u> ,mm)	平均最大値に	모스
L ,))	NO.	の場所	開始年月日	最終年月日	箇所別	平均	対する比率	Ч Л
lower	GP-01	右側壁外	H8.7.25		36			
lower	GP-02	末端部	H8.7.23		121	121.0	平均最大値に 対する比率 29.4% 37.5% 41.8% 100.0% 39.2%	
	GP-03	中央	H8.7.23		189	1545	平均最大値に 対する比率 29.4% 37.5% 41.8% 100.0% 39.2%	
middle	GP-04	縁辺部	H8.7.25		120	104.0	平均最大値に 対する比率 29.4% 37.5% 41.8% 100.0% 39.2%	
	GP-05		H13.11.20					圧縮域
	GP-07	中央北側	H8.7.23		175			
	GP-08	中央北側	H8.7.24		158	172.0	/1 Q%	
	GP-09	中央北側	H8.7.23	LI2 11 20	183	172.0	41.0/0	
upper	GP-11	中央北側	H8.7.25	1113.11.20	199		平均最大値に 対する比率 29.4% 37.5% 41.8% 100.0% 39.2%	
upper	GP-10	陥没帯	H8.7.22		333	1115	100.0%	212月市
	GP-13	陥没帯	H8.7.23		490	411.5	100.070	
	GP-12	縁辺部	H8.7.25		117	161 5	20.2%	
	GP-16	縁辺部	H8.7.25		206	101.5	59.270	
	GP-06	ブロック外	H8.7.25		6			
地外	GP-14	ブロック外	H8.7.23		11			
	GP-15	ブロック外	H8.7.23		9		平均最大値に 対する比率 29.4% 37.5% 41.8% 100.0% 39.2%	

※同一観測期間を比較するため、1996(H8)年7月-2001(H13)年11月のデータを使用

図 2.13 GPSベクトル図 (GP.13)

表 2.1 GPSによる地表移動のエリア区分

......

K-4W

TN9-10

EN-3

30.0

0.0

1

4

揚水孔

20.0

図 2.15 地下水・地表(G B S)動態と対策工の関係 (upper_2)

図 2.16 地下水・地表(GPS)動態と対策工の関係 (middle)

図 2.17 地下水・地表(GPS)動態と対策工の関係(lower)

図 2.18 エリアごとの水位低下状況

<地下水排除工と地下水低下>

- (1) upper エリア
 - ① 2000 (H12) にひずみ計/GPS の変位が確認される時期は、対策工進捗の初期段階にあ り、全体に高い地下水位を形成しているが、地下水排除工の進捗にともない、低下量の 差はあるものの、全体に水位低下がみられる。
 - ② 2005 (H17) にもひずみ変位が一部の孔にひずみの累積がみられるが,地下水位は 2000 (H12) よりも低位である。
 - ③ 最上流部の No.2TN から No.1'TN, さらに upper 部の右側壁沿いの水位低下が 30~80m と大きい。
 - ④ これに対して, No.1TN, No.4TN 路線沿いは, 2~10m程度, さらに西側(左側壁側) 低下量は小さい。
- (2) middle エリア
 - ① 強制排水工を実施した I 拡大ブロック周辺の 10~25m の水位低下を示すが,
 - ② ①の東側(右側壁沿い)のエリアは 2~5m と水位低下は小さく, upper の右側壁側で 40~50mの水位低下を示すのに対して対象的である。
- (3) lower エリア
 - ① 銅山川右岸沿い(末端部)から右側壁にかけて、2~5mの水位低下がみられる。
 - ② 周辺では銅山川右岸沿いの小ブロック対応の地下水排除工(集水井)が実施されている。

3. 地下水分布と水収支

3.1 流量観測結果と比流量

3.1.1 流量観測

- (1) 観 測 時 期
 - ① 2009年12月
 - ② 2010年6月
 - ③ 2010年1月
 - ④ 2011年6月
- (2)観測手法
- ① 直接計量 (メスシリンダー,ポリバケツ,ビニール袋)
- ② 間接計量(塩分稀釈法,流速測定法)

図 3.1 メスシリンダーによる計量

図 3.2 ビニール袋による採水

図 3.3 流速計による計測

図 3.4 塩分稀釈法による計測

図 3.5 流量測定結果(2011年6年18-20日踏査)

3.1.2 比流量(2011年6月18-20日の踏査結果より)

比流量を算定するにあたり、銅山川地すべり、および周辺を図 3.7に示すように区分した。この区 分は、地形、地すべり移動方向、移動量により区分した概略区分(図 3.6)に概ね対比される。

図 3.6 地すべりのブロックが地地形形による

表 3.	1 I	ノア区分	と流域区分	(比流量)	の対比
衣 う.	1 1 1	ノア区分	と流��区分	(比沭重)	の対印

地形,移動方向, 移動量による区分	流域区分と比流量 (mm/日)	流域の特徴	地すべりブロック内 の区分
	流域 A'(2.5)	流域Aの古水川側	地すべりブロック外
Lower エリア	流域 A(4.1)	全体ブロック下流域	地すべりの圧縮エリア
Middle エリア	流域 B(3.9)	田尻沢+近傍の集水井の流域	(移動方向の転向)
Upper エリア	域 C (7.4~7.9)	泥水沢+排水 TN 流域	地すべりの主働エリア

図 3.7 比流量の算定結果(2011年6月踏査結果による)

く流量観測結果>

- ① 流域A, Bの比流量は4mm/日前後と流域Cの5割程度と明らかに小さい。 ほぼ一致しており、モデルの再現性の高さが確認された。
- ② 流域A, B (Lower/Middle エリアに相当)は、流出量が極端に小さく、対象エリアの 透水係数が相対的に小さいことが考えられる。
- ③ そして、地すべりブロック外の流域A'は、流域Cの3割程度とさらに小さい。これは、 に向き古水川側への湧水量は少なくなることによる。

図 3.8 既往タンクモデルによる踏査期間中の流出量再現結果

(G0+G02が, 流域からの流出量 (mm/日))

図 3.9 F 側線断面図

また,既往のタンクモデル(流域C内の観測孔 C-2 での地下水位変動に同定させたモデル) による対象期間の流出量は、≒7mm/日(6.84~6.75)と比流量の算定結果(図 3.8)と

F 側線断面図(図 3.9)に示すように、シラス底面は凹凸をなし、未風化層上面は銅山川 側で逆傾斜をなすものの, 銅山川側の湧水標高が古水川側の湧水標高よりも低いために, 両者の間で分水嶺をなす台地付近を頂点とする地下水位面の動水勾配は全体的に銅山川

3.2 電気伝導度

く電気伝導度>

- ① 高比流量の流域 C では、流域 B との境界に近い一部と、南端の一部に高い電導度 を示すが、総じて低い値を示している。
- ② 一方,低比流量を示す流域A,Bにおいて,高い電気電導度を示している。比流量 の高低が透水係数の違いによるものとすれば、地下水の滞留時間の長短が電気電導 度の高低に関連している可能性がある

図 3.10 電気伝導度の分布図

3.3 揚水試験による地下水の流動特性

1995(H7)時点では,現行の全体ブロック滑動が観測されておらず,全体ブロックの滑落崖より も内側に位置した落差の大きな陥没帯を頭部とするブロックを対象として検討が行われていた。すべ り面は、シラス下位の風化岩層内にすべり面を推定してるものもので、シラスから風化岩層内の透水 性を考える上で参考となる。

図 3.11 揚水試験実施位置(揚水孔と水位観測孔(揚水孔からの距離は25m, 50m, 100m))

図 3.12 地下水位等高線図(左:揚水前,右:揚水後)

図 3.13 地下水低下量等值線図

No	揚水孔から	揚水前の水位	揚水後の水位	水位低下高
NO.	の距離(mm)	標高(m)	標高(m)	(m)
揚水孔	0.0	335.30	285.89	49.41
BV-1	26.0	336.44	334.47	1.97
BV-2	24.8	335.23	291.26	43.97
BV-3	25.5	335.93	302.46	33.47
BV-4	25.8	336.23	332.49	3.74
BV-5	51.0	334.20	333.70	0.50
BV-6	50.0	334.22	332.62	1.60
BV-7	50.5	338.63	336.30	2.33
BV-8	51.0	336.12	335.02	1.10
BV-9	102.0	326.07	325.35	0.72
BV-10	100.0	332.62	332.11	0.51
BV-11	100.1	347.39	347.17	0.22
BV-12	101.0	337.40	336.96	0.44

表 3.2 観測孔の水位低下高

<揚水試験結果> 湯水試験による影響半径は、R=100m → トンネル支線間隔計画の参考 ② 透水係数は, 6.76×10-4~6.11×10-3 (平均 3.39×10-3) → ·現行計画の地下水低下予測に反映 ・浸透流解析の水文条件設定の参考値 ③ 陥没帯の上下流壁は、涵養壁(上流側)、不透水壁(下流側)とする井戸公式によ る検討結果と整合的 → 比流量の大小 (upper 大, middle 小), 透水係数大小の可能性 (upper 大, middle 小) と調和的か?

表 3.3 揚水試験による境界条件と透水係数

	片側涵養壁 片側不透水壁	両側涵養壁	備考
a1	105.9m	106.4m	揚水孔から上流壁までの距離 地形上の境界面にほぼ適合
b1	46.9m	36.2m	揚水孔から下流壁までの距離 地形上の境界面にほぼ適合
k1	6.76×10^{-4}	2.94×10^{-4}	
k2	6.76×10^{-4}	2.94×10^{-4}	
k3	6.11×10^{-3}	-1.65×10^{-4}	
k4	6.11×10^{-3}	-1.65×10^{-4}	
平均k	3.39×10^{-3}		

表 3.4 直線配置の2孔の組合せから求まる影響圏(R)

Iライン	BV-6	BV-10	I ライン	BV-7	BV-11	エライン	BV-8	BV-12	Ⅳライン	BV-5	BV-9
BV-2	51.97	102.41	BV-3	54.02	101.29	BV-4	68.28	121.90	BV-1	64.34	226.69
BV-6		138.82	BV-7		107.63	BV-8		160.12	BV-5		10.46
		合計:	120	7.93							
		平均:	100).7							

資料4-15

4.2 すべり面の土質定数

これまでのすべり面せん断試験結果を表 4.1に、すべり面の区分を図 4.5~図 4.7に、採用した土 質定数をに示す。

表 4.1 すべり面せん断試験結果表

						カ	学特性				
			-	すべり	面せん断詞	弌 馬剣	Г.	レグせん	ん断試馬	矦	
試験 実施	採取場所	土質	深度 (m)	計験時の		¢'	計除味の	完全軟	化強度	残留強度	
牛皮				試料状態	cr (kPa)	φr (°)	試料状態	cp' (kPa)	фр' (°)	cr' (kPa)	φr' (°)
H16	ボーリング		30~31				シラス(浅)	0	35.15	2.50	32.60
H16	コア	シラス	31~32				シラス(深)	0	36.09	4.38	32.15
H21	側壁部							0	34.17	0.00	32.09
H8	T-1	強風化泥岩	0.2				No.T-1				4.10
H9	В	強風化泥岩	42.5	不撹乱	21.48	3.05	No.B				3.24
H9	D-1	強風化泥岩	21				No.D-1			5.69	10.71
ЦО		论国化记号	21 ~ 22	て増制	0	5.00	No.D-2B			12.26	11.81
Π9	D-2	强强作品	211022	小児乱	0	5.90	No.D-2G			7.35	13.74
ЦО		选同化泥岩	22	不増利	4.4.1	766	No.D-3			5.00	12.80
113	D 3	强度记忆石	23	们说出	4.41	7.00	No.D-3S			10.00	13.14
	S-1	強風化泥岩	128.57	不撹乱	1.79	3.45					
H21	S-2	強風化泥岩		不撹乱	0	14.63	.				
	S-3	強風化泥岩		不撹乱	19.39	5.69					
		シラス層内粘土層	71.85	不撹乱	28.21	17.6		0	27.36	0.24	23.92
		風化泥岩	74.05	不撹乱	25.64	12.35					
	S-4	風化泥岩	74.48	不撹乱	45.25	12.11					
		風化泥岩	83.1~83.4					0	9.98	3.63	6.01
H22	H22	風化泥岩	86.53	不撹乱	12.37	8.12					
		泥岩(褐色)	51.0~51.4					0	17.87	9.77	12.56
		泥岩(褐色)	51.75	不撹乱	7.25	7.21					
		泥岩	89.85	不撹乱	3.60	22 52					
		泥岩	100.0~100).4				0	10.43	9.06	7.98

図 4.6 側壁すべり面の区分(滑落崖)

図 4.7 側壁すべり面の区分(右側壁部)

表 4.2 設計土質定数一覧表

区分	$\gamma t (kN/m^3)$	c'(kPa)	ϕ ' (°)
シラス	18.4	109.7	32
側壁すべり面(三紀層中)	19.6	10	7.5
底面すべり面 (三紀層上面)	19.6	21	3

資料4-16

4.3 水圧の推定

4.3.1 地下水涵養量の推定

(1)採用気象データ

図 4.8 気象庁肘折データ(1962~)と森林総研データ(1996/8~2006/6)

(2) タンクモデル

(3) 応答モデルと涵養量の推定

図 4.10 直列3段モデルによる C-3孔の地下水位変化の再現結果

表 4.3 涵養量の検討結果

	水収支		融雪換算 降水量(P)	可能蒸発散量 (Ep)	実蒸発散量 (E)	河川流出量 (Go)	地下水涵養量 (R)	地下水流出量 (Go2)
1962	-2009	Σ	133,742	25,257	18,287	77,536	88,335	37,931
1002	2000	割合	100%	19%	14%	58%	66%	28%
1962	-2010	Σ	136,759	26,345	19,092	78,986	89,993	38,626
	8918	割台	100%	19%	14%	58%	66%	28%
ſ		流	出量(E+Go+Go2	2)		地	下水貯留量(R-G	o2)
	1060	2000	133	754		1060 0000	50,	404
	1962	-2009	10	0%		1962-2009	3	8%
- 6	1062	-2010	136	,704		1062-2010	51,	367
L	1902	-2010	10	0%		1902-2010	3	B%
-								
	在日口	6	融雪換算	可能蒸発散量	実蒸発散量	河川流出量	地下水涵養量	地下水流出量
	4 J D		降水量(P)	(Ep)	(E)	(Go)	(R)	(Go2)
2	2000/3/	29	117.50	0	0	26.15	13.5	2.20
2	2000/3/	30	60.10	0	0	29.36	16.6	2.23
2	2000/3/	31	59.30	0	0	30.80	19.2	2.27
	2000/4/	/1	16.10	0.5039	0	18.55	19.6	2.32
	2000/4/	2	11.60	0.5039	0	11.05	18.9	2.36
	2000/4/	3	0.00	0.5039	0.5039	5.98	17.4	2.39
	2000/4/	4	20.00	0.5039	0	6.27	16.4	2.43
	2000/4/	5	42.20	0.5039	0	13.42	16.7	2.46
	2000/4/	6	17.10	0.5039	0	10.17	16.5	2.49
	2000/4/	7	13.90	0.5039	0	7.60	16.0	2.52
	2000/4/	8	16.30	0.5039	0	7.03	15.5	2.55
	2000/4/	9	24.00	0.5039	0	9.08	15.4	2.58
2	2000/4/	10	54.40	0.5039	0	19.33	16.7	2.61
2	2000/4/	11	24.60	0.5039	0	15.51	17.2	2.64
2	2000/4/	12	20.40	0.5039	0	12.34	17.1	2.68
2	2000/4/	13	43.10	0.5039	0	17.63	17.8	2.71
2	2000/4/	14	15.70	0.5039	0	12.05	17.5	2.75
2	2000/4/	15	19.00	0.5039	0	10.26	17,1	2.78
2	2000/4/	16	11.40	0.5039	0	7.07	16.4	2.81
	2		586.7		0.5	243.5	307.8	45.6
			100%		0%	41%	52%	8%

図 4.11 縁辺部での境界条件 4.12地下水排除工設定箇所(H12臨界当時)

(2)水理定数

表 4.4 地質区分と水理定数(H17森林総研調査報告書より)

地質区分	透水係数(cm/sec)	有効間隙率	比貯留係數
火砕流堆積物層	5.0×10^{-4}	0.3	5.0 × 10 ⁻⁵
凝灰質砂岩層	1.0 × 10 ^{−5}	0.15	1.0×10^{-5}
砂質泥岩層	1.0 × 10 ⁻⁶	0.1	1.0 × 10 ⁻⁵
すべり層	1.0 × 10 ⁻⁵	0.15	1.0 × 10 ⁻⁵

表 4.5 浸透流解析での水理定数の設定(探索)範囲と最終設定値

設定箇所 (層区分)	透水係数(cm/sec) キャリブレーションによ	る探索範囲	現段階で	の同定値				
	Kx, ky kz							
シラス層(上層)	$1.0 \times 10^{-4} \sim 8.0 \times 10^{-4}$	8.0×10 ⁻⁵ ~5.0×10 ⁻⁴	8.0×10 ⁻⁴	8.0×10 ⁻⁵				
岩盤層 (下層)	$1.0 \times 10^{-5} \sim 8.0 \times 10^{-5}$	$8.0 imes 10^{-6} imes 5.0 imes 10^{-5}$	8.0×10-5	8.0×10-6				

図 4.13 地下水排除工設定箇所(H22) 図 4.14

义

図 4.14 MODEFLOW による地下水排除工設定(H22)

表 4.6 パラメータを違えた複数ケースでのキャリブレーション結果(H21)

		探索パラメータ												再現状	況	
Test Model		透水係勢	[cm/sec]				71	ッダクタン	ィ[m2	/day]			排水量	Memo		
	k1x,y	k1z	k2x,y	k2 z	No.1TN	No.1'TN	拡大	No.2TN	No.4TN	集水井 グループ(1)	集水井 グループ(2)	集水井 グループ(3)		RMS [m]	Normalized	
H12_model(1)	1.0×10^-4	1.0×10^-4	1.0×10^-5	1.0×10^-5	1	1	1			1	1	1	86%	19.220	9.8%	
H12_model(2)	5.0×10^-4	5.0×10^-4	1.0×10^-5	1.0×10^-5	1	1	1			1	1	1	85%	13.189	6.8%	上層の透水係数を大きく
H12_model(3)	5.0×10^-4	5.0×10^-4	5.0×10^-5	5.0×10^-5	1	1	1			1	1	1	108%	12.821	6.6%	下層の透水係数を大きく
H12_model(4)	5.0×10^-4	1.0×10^-4	5.0×10^-5	5.0×10^-5	1	1	1			1	1	1	107%	12.765	6.5%	上層の透水係数に異方性を
H12_model(5)	5.0×10^-4	1.0×10^-4	5.0×10^-5	1.0×10^-5	1	1	1			1	1	1	97%	12.341	6.3%	下層の透水係数に異方性を
H12_model(6)	8.0×10^-4	1.0×10^-4	5.0×10^-5	1.0×10^-5	1	1	1			1	1	1	94%	12.198	6.2%	上層の異方性を強く
H12_model(7)	8.0×10^-4	8.0×10^-5	5.0×10^-5	1.0×10^-5	1	1	1			1	1	1	94%	12.191	6.2%	上層の異方性を強く
H12_model(8)	8.0×10^-4	8.0×10^-5	8.0×10^-5	8.0×10^-6	1	1	1			1	1	1	92%	11.980	6.1%	下層の異方性を強く
H12_model(9)	8.0×10^-4	8.0×10^-5	8.0×10^-5	8.0×10^-6	1	1	1.2	2		1	1	1	96%	11.958	6.1%	排除工毎のコンダクタンスを調整
H12_model(10)	8.0×10^-4	8.0×10^-5	8.0×10^-5	8.0×10^-6	1	1	1.5	5		1	1.5	3	101%	11.551	5.9%	排除工毎のコンダクタンスを調整
				•						排水トンネル	~系統に関する	見積量に対	· する割合↑	4. 	·	

)地下水位分布幅(再現範囲の地下水面の起伏幅)に対する割合

表 4.7 パラメータを違えた複数ケースでのキャリブレーション結果(H22.11 踏査時点)

	探索バラメータ										再現状況					
Test Model		透水係数	ξ[cm/sec]				コン	ダクタン	ノス [m²/	/day]			排水量	地 (全観)	下水位 町1.34点	Memo
	k1x,y	k1z	k2 x,y	k2z	No.1TN	No.1'TN	山拡大	No.2TN	No.4TN	集水井 グループ(1)	集水井 グループ(2)	集水井 グループ(3)	実測比	RMS [m]	Normalized	monto
H22_model(1)	8.0×10^-4	8.0×10^-5	5.0×10^-5	5.0×10^-6	1	1	1.5	1	1	1	1.5	3	125%	26.862	18.2%	涵装量:直前10日平均2981.1mm/y
														21.177	14.3%	← EW-6, TN-12-6を除いた評価
H22_model(2)	6.0×10^-4	6.0×10^-5	3.0×10^-5	3.0×10^-6	1	1	1.5	1	1	1	1.5	1	119%	25.370	17.2%	
														17.663	11.9%	← EW-6, TN-12-6を除いた評価
H22_model(3)	6.0×10^-4	6.0×10^-5	3.0×10^-5	3.0×10^-6	1	1	1.8	0.8	0.9	1	1.6	0.6	109%	24.316	16.4%	
														16.443	11.1%	← BV-6, TN-12-6を除いた評価
H22_model(4)	6.0×10^-4	6.0×10^-5	3.0×10^-5	3.0×10^-6	1.1	1	2	0.7	0.8	1	1.6	0.6	98%	24.145	16.3%	
														16.404	11.1%	← EW-6, TN-12-6を除いた評価
H12_model(11)	6.0×10^-4	6.0×10^-5	3.0×10^-5	3.0×10^-6	1.1	1	2	-	-	1	1.6	0.6	117%	11.493	5.9%	既住モデルの透水係数、コンダクタンスを修正、 改めて随界時の再現計算を行った結果。(演養量:15日間平均)

H22現況再現では「実期携水量」、臨界時再現では「想定量」に対する割合↑ 検証対象箇所の地下水位分布幅(再現範囲の地下水面の起伏幅)に対する割合↑

表 4.8 三次元浸透流解析による検討ケース一覧表

	se(Model名称)	涵養条件	涵養量			
			[mm/15day]	[mm/年]		
H12当時の排除 エ	DouzanRinkai_H12	H12融雪期(臨界条件)	257.9	6274.4		
- -	DouzanMutaisaku_030	30年確率	335.1	8154.1		
 木灯束 (既設集水井あり) 	DouzanMutaisaku_050	50年確率	346.9	8441.2		
	DouzanMutaisaku_100	100年確率	362.5	8820.8		
	DouzanGenkyou_030	30年確率	335.1	8154.1		
現況地下水排除工	DouzanGenkyou_050	50年確率	346.9	8441.2		
	DouzanGenkyou_100	100年確率	362.5	8820.8		
	DouzanKeikaku_030	30年確率	335.1	8154.1		
┃	DouzanKeikaku_050	50年確率	346.9	8441.2		
《玩儿「計画」が「小工/	DouzanKeikaku_100	100年確率	362.5	8820.8		

図 4.15 三次元地下水解析結果(臨界再現)

図 4.16 三次元地下水解析結果(30年確率再現)

図 4.17 三次元地下水解析結果(50年確率再現)図 4.18三次元地下水解析結果(100年確率再現)

表 4.	9	検討ケースごとの水収支	(モデル解析結果)	一覧
------	---	-------------	-----------	----

							-								
	排除工配置	H 12年		未対 (既設集水	策 :井を除く)			現況:	地下水排防	最終計画 (現況+計画排除工)					
	涵養条件	H12融雪期	H12融雪期	1/30確率	1/50確率	1/100確率	H22年11月	H12融雪期	1/30確率	1/50確率	1/100確率	H12融雪期	1/30確率	1/50確率	1/100確率
	地下水涵養重 [m.m./年]	6,274	6,274	8,154	8,441	8,821	2,981	6,274	8,154	8,441	8,821	6,274	8,154	8,441	8,82
モデル範目	囲への地下水涵義総量 [L/min]	49,429	49,429	64,237	66,499	69,489	23,485	49,429	64,237	66,499	69,489	49,429	64,237	66,499	69,489
	No.1TN	4,019	0	0	0	0	2,207	3,389	3,630	3,651	3,679	2,977	3,269	3,309	3,358
	No.1'TN	727	0	0	0	0	796	996	1,035	1,038	1,042	851	916	925	93:
	拡大ブロック	725	0	0	0	0	1,049	1,156	1,183	1,187	1,192	1,110	1,139	1,143	1,148
	No.2TN	0	0	0	0	0	869	1,425	1,617	1,633	1,656	2,035	2,426	2,483	2,551
地下水排水量	No.4TN	0	0	0	0	0	926	1,377	1,501	1,513	1,528	1,820	2,150	2,195	2,251
(計算結果) 	集水井_(田尻沢北)	4,255	4,283	4,544	4,570	4,600	3,220	4,240	4,510	4,536	4,566	4,230	4,500	4,528	4,558
[L/min]	集水井_(田尻沢-泥水沢間)	2,534	2,811	2,985	3,011	3,041	1,860	2,385	2,564	2,590	2,624	2,321	2,510	2,538	2,57
	集水井_(泥水沢南)	1,249	1,507	1,590	1,600	1,612	695	1,187	1,282	1,294	1,307	918	1,133	1,160	1,19:
	No.3TN	_	-	_	-	-	_	_	-	-	_	450	627	633	641
	No.5TN	-	-	-	-	-	-	-	-	-	_	635	674	678	684
	No.6TN	-	-	-	-	-	-	-	-	-	_	1,663	1,819	1,839	1,864
 	[L/min]	13,508	8,601	9,120	9,181	9,253	11,621	16,154	17,322	17,441	17,593	19,012	21,165	21,432	21,754
	(地下水涵養 重に対する割合)	27.3%	17.4%	14.2%	13.8%	13.3%	49.5%	32.7%	27.0%	26.2%	25.3%	38.5%	32.9%	32.2%	31.3
							(23本香11五)								

図 4.19 三次元地下水解析結果の比較(現行計画の地下水排除工を実施した場合の地下水分布と

H12年当時の地下水排除工での地下水分布の水位差)

4.4 地下水排除工計画と評価

4.4.1 現行の対策工計画と進捗

N		播 別		計画安全率	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011			
	•.	ne m	2000 - 2000	mex++	平成8年	平成9年	平成10年	平成11年	平成12年	平成13年	平成14年	平成15年	平成16年	平成17年	平成18年	平成19年	平成20年	平成21年	平成22年	平成23年			
		No.1強制排水工	28 基	F= 1 000		\rightarrow																	
	'	No. 1強制排水工 トンネル連結		F= 1.000																			
8	2	トンネル立上ボーリング	50 基	F= 1.005				↔															
		No.1'強制排水工	8基					•		•													
ŝ	3	No. 1強制排水工 トンネル連結		F= 1.009															◄				
	4	【拡大ブロック強制排水工	9 基	F= 1.013				•															
		No. 2強制排水工	33 基																				
	5	No. 2強制排水工 トンネル連結	33 基	F= 1.036												+	\rightarrow	-					
1	6	No. 3強制排水	7基	F- 1.040																			
1 AV	7	No. 4強制排水工 (トンネル連結)	27 基	F= 1.052												•							
	8	No. 5強制排水	9基	F= 1.058																			
1	9	No. 6強制排水	26 基	F= 1.071												*							
1	10	No.1落込みBr	27 本	F= 1.082										ക_				·			·		•
1	11	No.1'落込みBr	7本	F= 1.083										-4								\sim	
1	12	No.2落込みBr	32 本	F= 1.088																		2	~
1	13	No.3落込みBr	6 本	F= 1.089									0	2	_		A	ŗ	entill	<u>165711</u>	STOR A	Ren IL	5
	14	No.1TN建上げBr	166 本	F= 1.103										2	\sim		X	₹ •	V TV		N 15.V		Y
1	15	No.1TN枝線建上げBr	40 本	F= 1.107										<u> </u>	$/\gamma$	TT.		5	hh	he]	1 the		0 1'
1	16	No.2TN建上げBr	158 本	F= 1,130										XA	A	N=X	$2 \sim$	A.			1 - [-];]		J. I
1	17	No.3TN建上げBr	26 本	F= 1.133										- ME	1 /	_ ∣∕¶	\mathbf{n}	UD/	VIX	\wedge /			$\langle \rangle$
1	18	No.4TN建上げBr	120 本	F= 1.144													*/						<u>s</u>
1	19	No.5TN建上げBr	40 本	F= 1.149										λ					2				-
2	20	No.6TN建上げBr	128 本	F= 1.161										-71-	55			$\langle \cdot \rangle$	1.1.1:0		X The N	0.5TN	1)
2	21	No. 4落込みBr	26 本	F= 1.172										XI ($/ \Sigma $	hi.	-	7. (A.)	K		X		Joseph Provide State
-	22	No.5落込みBr	8本	F= 1.177									-			Y T	<u>1770</u>	¥ X			- L-FL		Æ
-	23	No. 6落込みBr	25 本	F= 1, 185									Y	: 20	VE	X	1	XI	~~ ,	f	to the		
4	24	No.IIN 建上げ Br 追加	104 个	F= 1, 198	-				-					$-\infty$	· NP		X	$\geq \bigvee$	N.	XL			(Z)
-	20 1	No.11N校稼建上门DF迫加	150 +	F = 1.202										·	John -	1	4-	<u>ka</u>	\mathcal{P}	2		1-	
-	-0	現状安全率(平成22年度)	100 44	F= 1.078										0	A	4	-		R		A AN		
		近似二次元安 定 解析	按开 中		+1 =	57										$\frac{1}{2}$	A	X			A AN A A		K
		他上海外	他工中		at te	븨							· · · · · · · · · · · · · · · · · · ·					X	And as		施設災TN	No. 61	N
															\sim	A	XI	XAC	(St		ACA	to that	the second
															X		MA I		/F			March S	4-
													, -			24	X	Star 1		\leftarrow		XXXX	S No
															$\sim \lambda$	~`		-					Ľ
															~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				D		STAND	P KSI	<u>EU</u>
															•	- Alli	577	A					
													Ļ			19	ZØ			<u> </u>	<u> </u>	Ş	
																	, *S45	SNA		N. M. W.			<b>THE REAL</b>
																		san the second	M. Caller			the second secon	

### 図 4.20 対策工計画の配置と現行計画



### 4.4.2 RBSMによる全体ブロックの安全率

	$\gamma t (kN/m^3)$	C(kPa)	φ(°)
シラス	18.4	109.7	32.0
野口層	19.6	10.0	7.5
底面古口層上面	19.6	21.0	3.0

地一	下水モデル		全	体		上部領域						領域		下部領域					
水位条件	対策条件	Fs	R(kN)	D(kN)	α(°)	Fs	R(kN)	D(kN)	α(°)	Fs	R(kN)	D(kN)	α(°)	Fs	R(kN)	D(kN)	α(°)		
H12臨界	H12時点での対策	1.000	1,196,011,045	1,195,918,572	263.0	0.654	829,913,055	1,268,066,284	257.1	8 656	174,142,183	20,119,250	303.9	1.339	191,955,807	143,338,676	27.2		
H12臨界		1.040	1,290,108,777	1,240,434,306	263 0	0.690	907,269,380	1,315.809.985	257.0	8.708	182,476,147	20,953,921	304.0	1.342	200,363,250	149.307,122	27.2		
30年確率	相识动等	0.981	1.158,330,112	1,181,007,808	263.4	0.646	811,391,671	1,256.243.512	257.1	8.042	168,914,051	21,003,449	310.1	1.206	178,024,390	147.675,149	27.2		
50年確率	57 NL NJ SK	0.975	1.144,884,908	1,174,744,484	263.5	0.642	801,905,193	1,250.006.520	257.1	7 950	167,367,842	21,053,731	310.9	1,190	175,611,874	147.612,233	27.1		
100 <del>4</del> mm <del>4</del>		0.807	.128,992,146	1,167,311,470	263.5	0.636	790,500,327	1,242,594,393	257.1	7.844	165,530,464	21,103,865	311.8	1.173	172,961,355	147.420,227	27.1		
H12臨界		1.099	.459,983,698	1,328,685,880	262.7	0.742	1,047,129,559	1,410.624.547	256.7	8.824	197,015,309	22,327,071	304.1	1.343	215,838,830	160.711,627	27.2		
30年確率	是終計面	1.029	.281,741,867	1,246,072,455	263.3	0.689	913,406,011	1,326.296.750	257.0	8.088	179,446,778	22,186,907	310.3	1.206	188,889,078	156,603,308	27.2		
50年確率	· · · · · · · · · · · · · · · · · · ·	1.019	.258,175,817	1,235,139,353	263.4	0.681	895,454,469	1,315.055.528	257.0	7.990	177,114,209	22,166,244	311.1	1.190	185,607,138	155.952,218	27.1		
100年確率		1.006	.229,110,038	1,221,585,384	263.5	0.671	873,001,985	1,301.073.245	257.0	7.878	174,250,659	22,118,405	312.0	1.174	181,857,393	154.960,092	27.2		
H12幅界		0.972	1.126,792,126	1,159,004,187	263.1	0.630	774,153,762	1,228.878.401	257.1	8.591	167,329,181	19,477,372	304.0	1.334	185,309,183	138,892,163	27.2		
30年確率	半勾等	0.944	1.068,354,629	1,132,228,897	263.5	0.614	739,205,575	1,203,940,734	257.2	7.955	159,499,907	20,050,725	310.0	1.201	169,649,147	141.265,278	27.1		
50年確率	21×23×	0.940	1,061,192,860	1,129,007,185	263.6	0.612	734,857,938	1,200,936,015	257.2	7.867	158,491,640	20,146,749	310.7	1.186	167,843,281	141.571,898	27.1		
100年確率	1	0.936	1,052,709,269	1,125,227,867	263.6	0.609	729,417,534	1,197.401.652	257.2	7.771	157,322,641	20,245,914	311.6	1.171	165,969,094	141,786,930	27.1		







obs= - 295

H

### 表 4.10 コンダクタンスによる安全率の変化

地	下水モデル	現状で考	現状で考えられるコンダクタンスの範							
水位条件	対策条件	囲での感度分析								
H12 臨界	H12 時点での対策	C=0.6	現行モデル	C=1.1						
30年確率		1.024	1.029	1.038						
50年確率	最終計画	1.014	1.019	1.028						
100年確率		1.002	1.006	1.016						

### 表 4.11 RBSMによる検討モデルの一覧

実施年	file	no	Area	R	D	EsRBSM	α	obs.	diff.	判定	(D) (d)	- Aur	<u>C1</u>		0	D	D	E-DOOM		al a
2000		0	all	990.690.572	1 182 205 371	0.84	250.2	260	98	0	夫爬	24	Tile	no	Area	R 000 040 017	1.001.000.441	FSRESM	a 060.0	ODS.
			an	640 704 157	1 104 454 040	0.04	0.40.0	200	01.0	0			Bhsm=douzan=30	0	all	1,366,248,317	1,221,992,441	1.12	263.0	260
	Rbsm-douzan-14		upper	147 500 000	1,134,434,040	0.07	240.0	270	21.2	0			Rbsm-douzan-30	1	upper	960,433,064	1,286,663,700	0.75	257.0	270
		2	madie	147,308,980	07,007,003	2.10	220.0	290	74.4					2	madie	108,000,490	29,287,817	0.74	299.4	230
H21		3	lower	200,457,436	61,799,065	3.24	350.2	326	24.2	0		H		3	lower	237,749,738	142.930,305	1.00	27.0	320
		0	all	1,206,754,554	1,206,293,505	1.00	260.1	260	0.1	0					all	0.46,406,457	1,222,995,787	0.74	202.0	200
	Rbsm-douzan-18	1	upper	823,021,146	1,200,536,146	0.69	255.6	270	14,4	0			Rbsm-douzan-31	2	middle	168 171 288	29 397 120	5.72	200.7	270
		2	middle	183,607,405	18,701,994	9.82	310.3	295	15.3	0				3	lower	233,304,679	133,509,871	1.75	282	326
		3	lower	200,126,002	79,594,181	2.51	352.0	326	26.0			Ŀ		0	all	1.347.777.128	1.224.139.060	1.10	262.5	260
		0	all	1,309,958,271	1,201,510,250	1.09	265.0	260	5.0	0				1	upper	945.413.525	1.284.490.932	0.74	256.9	270
	Rbsm-douzan-19	1	upper	936.034.675	1,281,723,085	0.73	257.5	270	12.5	0			Rbsm-douzan-32	2	middle	168,543,343	29.459.169	5.72	298.7	295
		2	middle	175,935,947	104,609,741	1.68	2.3	295	67.3					3	lower	233.820.261	133.801.753	1.75	28.2	326
		3	lower	197,987,649	81,297,877	2.44	39.0	326	73.0			F		0	all	994,694,409	1.184,674,136	0.84	251.4	260
		0	all	1,398,322,959	1,205,397,105	1.16	265.7	260	5.7	0				1	upper	651,040,900	1.137,880,650	0.57	250.1	270
	Dham-day man-20	1	upper	937,331,816	1,251,741,873	0.75	257.5	270	12.5	0			Rbsm-douzan-33	2	middle	147,244,891	67,710,588	2.17	220.5	295
	RushFu0uzari-zo	2	middle	196,838,018	34,602,228	5.69	357.4	295	62.4					3	lower	196,408,618	62,617,581	3.14	351.5	326
		3	lower	264,153,125	147,021,763	1.80	8.5	326	42.5			F		0	all	1,032,440,834	1,178,657,145	0.88	250.3	260
		0	alt	1,439,088,246	1,201,510,250	1.20	265.0	260	5.0	0			Pharmedou ran=34	1	upper	673,256,023	1,176,707,221	0.57	250.1	270
		1	upper	959,058,133	1,286,857,436	0.75	257.3	270	12.7	0			Roam dodzam o+	2	middle	152,269,286	70,009,455	2.17	220.5	295
	Rosm-douzan-21	2	middle	203,377,112	31,797,628	6.40	19.0	295	84.0					3	lower	206,915,524	70,780,509	2.92	36.5	326
		3	lower	276.653.001	155.805.784	1.78	17.9	326	51.9					0	all	1,034,800,734	1,178,892,505	0.88	250.2	260
		n	all	1 430 167 243	1 202 095 140	1.19	263.6	260	36	0			Rbsm-douzen=35	1	upper	674,653,031	1,176,943,770	0.57	250.0	270
		1	unner	953 180 581	1,202,000,110	0.74	256.1	270	13.9					2	middle	152,677,486	70,197,090	2.17	220.5	295
	Rbsrr-douzan-22	0	middle	202,097,660	21 596 466	6.40	10.0	2,0	94.0	0		L		3	lower	207,470,217	70,970,256	2.92	36.5	326
		2	Inidale	202,007,003	154 017 000	1.70	13.0	230	51.0					0	all	1,036,752,037	1,181,790,218	0.88	250.2	260
		3	lower	274,898,993	104,817,803	1.78	001.0	320	01.9				Rbsm-douzan-36	1	upper	679,582,010	1,174,697,128	0.58	249.9	270
	Rbsm-douzan-23	0	ali	1,315,958,271	1,194,126,206	1.10	201.0	260	0.9					2	middle	152,291,248	70,098,191	2.17	220.6	295
		1	upper	942,205,340	1,261,828,083	0.75	256.9	270	13.1	0	H2	2		3	lower	204,878,778	67,564,015	3.03	33.0	326
		2	middle	155,527,800	6,705,691	23.19	179.2	295	115.8					0	all	1,042,295,683	1,177,155,832	0.89	250.3	260
		3	lower	218,225,131	115,674,451	1.89	25.5	326	59.5				Rbsm-douzan-37	1	upper	669,621,260	1,157,479,326	0.58	249.9	270
		0	all	1,321,575,742	1,194,336,557	1.11	261.3	260	1.3	0				2	middle	150,058,879	69,070,435	2.17	220.6	295
H22	Rbsm-douzan-24	1	upper	942,178,511	1,261,791,714	0.75	256.9	270	13.1	0				3	lower	222,615,544	59,273,116	3.70	23.1	326
		2	middle	155,551,772	6,434,612	24.17	179.1	295	115.9					1	all	1,038,003,523	1,181,695,133	0.88	250.2	260
		3	lower	223,845,460	121,574,909	1.84	23.4	326	57.4				Rbsm-douzan-38		upper middle	159,429,417	70 160 799	0.00	249.9	270
		0	all	1,331,951,319	1,193,611,285	1.12	261.3	260	1.3	0				3	lower	205,359,096	68 742 366	2.17	33.4	326
	Phemedouzan=25	1	upper	948,970,452	1,270,887,240	0.75	256.9	270	13.1	0		F		0	all	1 034 040 006	1 181 605 748	0.88	250.2	260
	Nostri douzari zo	2	middle	156.673,008	6.485,588	24.16	179.0	295	116.0					1	unner	677893.013	1,1/6,/36,551	0.55	200.2	2/0
		3	lower	226,307,859	127,068,684	1.78	27.2	326	61.2				Rbsm-douzan-39	2	middle	151.858.172	69.897.836	2.17	220.6	295
		0	all	1,338,949,260	1,204,908,791	1.11	261.7	260	1.7	0				3	lower	204,288,820	68,771,334	2.97	34.5	326
	Phoenedou cone 26	1	upper	953,439,644	1,277,125,760	0.75	256.9	270	13.1	0		F		0	all	1,055,999,153	1,182,109,004	0.89	250.6	260
	HUSTIFGUU28rF20	2	middle	165,938,740	9,417,230	17.62	264.6	295	30.4					1	upper	686,706,183	1,192,036,019	0.58	249.9	270
		3	lower	219,570,876	130,735,976	1.68	27.9	326	61.9				Rosm-douzan-40	2	middle	153,839,252	70,840,742	2.17	220.6	295
		0	all	1.341.623.425	1.208.112.733	1.11	261.9	260	1.9	0				3	lower	215,453,718	86,388,814	2.49	36.1	326
		1	upper	954,895,783	1,279,143,086	0.75	256.9	270	13.1	0		Г		0	all	1,056,201,606	1,182,166,372	0.89	250.6	260
	Rbsm-douzan-27	2	middle	165.662.415	12.271.253	13.50	279.2	295	15.8	0			Phermodou izan=41	1	upper	686,813,072	1,193,074,040	0.58	249.9	270
		3	lower	221.065.227	132 971 536	1.66	27.8	326	61.8				Nosin douzan 41	2	middle	153,862,360	70,842,384	2.17	220.6	295
		0	all	1 358 822 876	1 214 002 313	1.12	262.5	260	25	0		L		3	lower	215,526,174	87,646,219	2.46	36.0	326
		1	Lippor	057 512 675	1 292 600 200	0.75	256.0	270	121	0				0	all	1,064,489,855	1,179,413,157	0.90	251.0	260
	Rbsm-douzarr-28	0	middle	179 427 677	19.477.505	0.75	200.9	270	17	0			Rbsm-douzan-42	1	upper	690,856,704	1,200,076,985	0.58	249.9	270
		2	lover	000.070.504	10,477,000	1.60	230.7	290	61.0	0				2	middle	154,538,680	70,701,184	2.19	219.8	295
		0	lower	1.000 550,100	1 017 700 760	1.00	21.2	020	01.2	0		Ļ		3	lower	219,094,471	100,314,240	2.18	34.7	326
		U 4	all	1,300,009,139	1,217,709,700	0.12	202.8	200	2.8	- 0				0	all	1,407,725,558	1,204,475,642	1.17	262.8	260
	Rbsm-douzan-29	1	upper	908,927,712	1,284,568,973	0.75	257.0	270	13.0			Rbsm-dou	Rbsm-douzan-43		upper	967,895,120	1,310,706,975	0.74	256.8	270
		2	middle	1/1,/84,288	24,224,882	7.09	298.6	295	3.6	0				2	middle	1 /5,031,114	9,678,310	18.08	264.9	295
		3	lower	235,847,139	140,522,179	1.68	27.4	326	61.4					3	lower	264,799,324	174,332,081	1.52	31.4	326

diff.	判定
3.0	0
13.0	0
4.4	0
61.6	
0.0	0
10.0	~
13.3	0
3.7	0
62.2	
2.5	0
13.1	0
3.7	0
62.2	
8.6	0
19.9	0
74.5	
25.5	
97	0
10.0	ŏ
19.9	0
74.3	
/0.5	
9.8	0
20.0	0
74.5	
70.5	
9.8	0
20.1	0
74.4	
67.0	
9.7	0
20.1	0
74.4	
57.1	
37.1	0
9.0	0
20.1	0
/4.4	
67.4	
9.8	0
20.1	0
74.4	
68.5	
9.4	0
20.1	0
74.4	
70.1	
9.4	0
20.1	0
74.4	-
70.0	
, U.U 0.0	0
9.0	
20.1	0
/5.2	
68.7	
2.8	0
13.2	0
30.1	
65.4	