木質バイオマスボイラー
導入・運用にかかわる
実務テキスト

株式会社
森林環境リアライズ

FUJITSU 富士通総研
環境エネルギー普及株式会社
第1章 はじめに〜バイオマスボイラー導入の意義と導入のポイント … 1

Ⅰ. 本書の趣旨 ………………………………………………………………… 1
Ⅱ. 木質バイオマス導入に際して特に留意すべき点 ………………… 2

第2章 コスト構造 ……………………………………………………………… 4

Ⅰ. バイオマスエネルギー利用のコスト構造 …………………… 4
（1）コスト構造の全体 …………………………………………… 4
（2）kWあたりの標準コスト …………………………………… 5
（3）ランニングコスト …………………………………………… 6
Ⅱ. 収支計画手法 ……………………………………………………………… 12
（1）収支計画策定にあたっての考え方 ……………………………12
（2）収支計画の手順 ………………………………………………… 13
Ⅲ. 欧州におけるバイオマスエネルギー利用のコスト構造 ……………… 17
（1）標準的なコスト構造 ………………………………………… 17
（2）収支計算例 …………………………………………………… 19
Ⅳ. コスト低減に向けて ……………………………………………………… 21
（1）設備費用 ……………………………………………………… 21
（2）稼働時間 ……………………………………………………… 22
（3）燃料単価 ……………………………………………………… 22

第3章 熱需要の把握 …………………………………………………………… 23

Ⅰ. 化石燃料ボイラーとの違い ……………………………………………… 23
（1）出力調整ができるか …………………………………………… 23
（2）稼働率が容量か ……………………………………………… 24
Ⅱ. 熱需要の内訳 ……………………………………………………………… 25
（1）熱需要の把握と設計の論点 …………………………………… 25
（2）熱需要分析と設計の例 ……………………………………… 26
Ⅲ. 熱需要把握の実務 ………………………………………………………… 30
（1）石油・ガス・電気のデータを用いる ………………………… 30
（2）実測する ……………………………………………………… 30
（3）内訳を推測する ……………………………………………… 30
（4）温度帯を整理する …………………………………………… 31
（5）ヒアリングで補完する ………………………………………… 31
Ⅳ. まとめ ……………………………………………………………………… 31
第4章 燃料の特徴と品質

I. 木質バイオマス燃料の種類と品質
（1）燃料の種類…………………………………………………………………32
（2）水分と熱量の関係…………………………………………………………34
（3）燃料に含まれる水分の基準………………………………………………35
（4）水分の計測と確認………………………………………………………36
（5）木質燃料の単位…………………………………………………………36

II. 薪
（1）薪とボイラの適性………………………………………………………37
（2）薪を購入する場合の確認事項…………………………………………37
（3）薪の単位…………………………………………………………………38

III. チップ
（1）チップの形状と燃料供給システムの適性………………………………39
（2）チップの水分とボイラの適性…………………………………………40
（3）不純物の混入による不具合……………………………………………41

IV. 木質ペレット
（1）ペレットの品質規格……………………………………………………43
（2）認証システム……………………………………………………………44

第5章 燃料の生産方法

I. 薪
（1）製造方法…………………………………………………………………45
（2）価格………………………………………………………………………46

II. チップ
（1）チップの製造と輸送……………………………………………………47
（2）自然乾燥………………………………………………………………48
（3）製造コスト……………………………………………………………49

III. ペレット
（1）製造方法………………………………………………………………50
（2）製造コスト………………………………………………………………51

IV. 生産の低コスト化の提案

第6章 プロジェクト・マネジメント

I. 事業企画段階でのマネジメント
（1）事業性調査……………………………………………………………53
（2）EPC契約の種類と特性………………………………………………54
（3）各段階でのマネジメントのポイント……………………………………56

II. 運転段階でのマネジメント
（1）O&M契約の種類と特性……………………………………………58
（2）運転（Operation）・保守（Maintenance）………………………58

III. 灰処理
第7章 ボイラー技術の解説

Ⅰ. 木質バイオマスを燃やす

（1）ボイラーと焼却炉

（2）燃焼の過程

Ⅱ. 効率的な燃焼と空気

（1）空燃比

（2）空気比

（3）効率化のための工夫

Ⅲ. 効率的な燃焼と燃料の質

（1）灰の量

（2）エミッション

（3）ボイラーの耐久性

Ⅳ. ボイラーと燃焼炉

（1）ボイラーの構造

（2）燃焼炉の構造

Ⅴ. 様々なボイラーの特徴

（1）薪ボイラー（＜100kW）

（2）温水供給機能付ペレットストーブ（10〜35kW）

（3）小型ペレットボイラー（10〜100kW）

（4）農業用ペレットボイラー（50〜200kW）

（5）中型ペレットボイラー（100〜1,000kW）

（6）小型チップボイラー（30〜200kW）

（7）中型チップボイラー（200〜1,000kW）

Ⅵ. 熱供給システム

Ⅶ. 燃料の配送と貯蔵、搬送

第8章 国内事例調査結果の分析

Ⅰ. 国内事例調査に基づくバイオマス利用の課題・ポイントと今後の方向性

（1）計画段階

（2）運用段階

Ⅱ. まとめ

第9章 参考資料
Ⅰ.本書の趣旨

森林資源由来の木質バイオマスは、戦後間もなくまでは、当たり前のように燃料利用されていましたが、やがて石油などの化石燃料によってかわられてしまっていました。近年では、CO₂ニュートラルな燃料源として、木質バイオマスはあらためて注目を集めるようになってきています。

特に、戦後植林した森林資源が成熟し蓄積も大幅に増加してきていること、化石燃料の価格が上昇してきていることなど、バイオマス利用の可能性はここにきて大幅に広がってきています。

バイオマスには電力利用と熱利用があります。電力利用だけではエネルギー効率もせいぜい20%台にしかなりませんが、熱利用であれば、効率を80%以上引き出すことができます。また、熱利用では比較的小規模な利用から始めることができること、需要者も供給者も地元主体となることから、熱利用は地域にとって、もっともメリットを引き出すことができるバイオマス利用といえるでしょう。

バイオマス熱利用が拡大することによって、化石燃料を代替していけば、資金が地域で循環するだけでなく、地域において新たな付加価値を生み出すことにもなります。つまり、バイオマスの熱利用は拡大すればするほど、地域経済への貢献、CO₂削減、環境負荷軽減と、一石二鳥三鳥もの効果をもたらすことになります。

バイオマスは近年のイノベーションの進展で、燃焼効率向上や自動制御・自動運転など使い勝手も大幅に向上了いますが、化石燃料とは特性が異なることから、化石燃料に比べて留意しなければならない点も少なくありません。このため、バイオマスのメリットを十分に引き出すためには、その特性を十分踏まえて設計・施工、運用をすることが不可欠です。

現実には、バイオマス利用は日本では新しい分野であり、かならずしもこうした点が十分に認識されたうえで利用されているわけではない。現場では試行錯誤が続いており、実態です。また、ボイラーの設備にかかるコストも、欧州に比べると相当に割高で、これもバイオマスの本格普及を妨げる大きな要因となっています。

そこで本事業（平成24年度林野庁事業「木質バイオマスの効率的利用を図るための技術支援」）では、まず現地事例調査を行い、日本におけるバイオマス利用の現状と課題がどうなっているかを整理しました。そのうえで、20年以上のバイオマス利用の歴史がある欧州の理論・技術を参考にして、日本のどこが問題でどこをどう解決していけばいいのかに
第1章 はじめに〜バイオマスボイラー導入の意義と導入のポイント

ついて分析を加えました。本テキストはこのような作業をベースにして、日本でこれからバイオマスボイラーを導入・運営する場合の理論・技術を体系的に整理したもののです。

本書の作成においては、これに先行して作成された「木質バイオマスボイラー導入指針」（森のエネルギー研究所。平成24年３月）も参考にしました。

本書が、これからのバイオマスボイラーの本格普及のための大きな一歩となれば幸いです。

Ⅱ. 木質バイオマス導入に際して特に留意すべき点

これから木質バイオマスボイラーを導入するに際して、是非とも検討すべき点を以下にまとめました。本書では、これらについて詳しく解説していきます。

（1）可能な限り稼働率を高める

化石燃料代の上昇によりバイオマスの価格が相対的に有利になってきていますが、他方で、バイオマスは設備費が相対的に高くなること、化石燃料とは使い勝手が異なることなどから、トータルコストで化石燃料よりも有利にならない限り、ユーザーがバイオマス導入のメリットを引き出すことは困難です。

このため、バイオマスボイラー導入に際しては、設備費を可能な限り抑えること、年間稼働時間が一定以上あることなどの条件をクリアーすることが必要です。本テキストでは、そのためのコスト計算方法を解説するとともに、稼働時間ごとのシミュレーションしています。

（2）適切なボイラーの規模と貯湯槽を選定する

年間の熱需要が一定として、稼働率を高めるために重要なのは、ボイラーと貯湯槽の大きさです。

化石燃料は熱需要の変動に応じて出力を調整することが可能です。このため、ボイラー設備の規模は、需要のピークに合うように設計すればすすみました。ところが、バイオマスボイラーは出力調整が苦手であり、基本的に一定の出力以上で燃焼を続ける必要があります。

このため、ピーク需要に合わせてボイラーを決めててしまうと、効率的な熱利用ができないくなります。バイオマスボイラー導入に際しては、熱需要の変動を日、年で把握のうえ、ボイラーの稼働を最適化できるようボイラーの大きさと貯湯槽の大きさを決めることが重要です。場合によってはピーク需要に対しては、化石燃料を使うなどして、その分ボイラーを小さめにして、稼働時間を上げるなどの対応も考えなければなりません。
木質バイオマス導入に際して特に留意すべき点

（3）チップの品質管理と適切なボイラーの選定

木質バイオマスは、化石燃料と異なり、燃料が均質ではありません。水分や形状など様々であり、ボイラーによって対応できるチップが異なってきます。たとえば、小型のボイラーでは、水分が一定以下の乾燥したチップでないとうまく燃焼しないなどです。反対に湿ったチップ用のボイラーに乾燥チップを投入すると、燃焼が早すぎて温度が上がりすぎるなどの問題も発生します。

このため、ボイラーの選定に際しては、地域で手に入るチップの質を勘案したうえで、チップに適合したボイラーを選定しなければなりません。

また、チップのボイラーへの供給もトラブルが発生しやすい部分であること、チップを貯蔵するサイロも大きすぎてはコストがかかりすぎるし、小さすぎれば頻繁に供給しなければならないなどのことが起こります。

（4）設計・施工と運営体制を明確にする

バイオマスはこのように化石燃料のボイラーとは異なる点が多く、これらのことを十分に考慮の上、ユーザーのニーズに合わせて設計していかなければなりません。施工もバイオマスの特性をよく理解した人が行うことが重要です。

また、当初の設計に合致した品質のチップの供給を確保することも重要です。メンテナンスも適切に行わなければなりません。これらのことから、木質バイオマスの導入に際しては、ボイラーの管理者が研修を受け、こうしたバイオマスの特性を理解して運営を行うことが必要です。

（5）ペレット・チップ生産

チップ生産の基本は、製材や合板用に伐採したあとの残りの木を使う副産物利用です。チップのために木を伐採したのでは、その分、コストがかかってしまいます。また、チップ加工は可能な限り林地で行うこと、それを直接、バイオマスボイラーや発電所のサイロに届けるようにして、輸送経路も簡略化することが不可欠です。

残材をチップ工場に運んで、そこでチップ化してサイロに運んでは、輸送コストが2倍になるのみならず、積み込み・積み下ろしのコストも発生してしまいます。

このシステムが機能するためには路網が整備されていること、チッパーの稼働率を高めるための安定した木材生産により、一定の残材が出てくることが前提になります。

ペレットも、副産物利用が原則です。欧州でのペレット生産は、乾燥した材を二回加工する製材工場でできるのが一般的です。日本のように丸太を伐採してペレット工場に運んで、その丸太を破砕・乾燥させるのでは、採算をあわせるのはムリです。しかも、バークが混入してしまい、品質が落ちてしまいます。
近年、化石燃料代の上昇によりバイオマスの価格が相対的に有利になってきています。他方で、バイオマスはボイラーの設備費が相対的に高くなること、燃焼技術や自動制御などイノベーションが進んだとはいえ、使い勝手ではまだ化石燃料に優位性があります。したがって、トータルコストで化石燃料よりも有利にならない限り、ユーザーがバイオマス導入のメリットを引き出すことは困難です。

このため、バイオマスボイラー導入に際しては、設備費可能な限り抑えること、年間稼働時間が一定以上あることなどの条件をクリアし、一定期間内で、化石燃料よりもバイオマス利用がコスト的に有利になることが、重要な判断基準になるといえます。本章では、木質バイオマス導入を判断するための基準となるコスト構造をまずは明らかにし、次いで収支計算方法について解説します。

なお、日本の木質バイオマスボイラーの設備費は、国際水準からすると相当に割高で、このままでは本格的な普及は困難な状況です。どの程度割高であり、今後どの程度まで下げる必要があるかをイメージしてもらうため、バイオマスの商業利用が進み、定量的なデータが整備されているドイツやイギリスの事例も分析しました。

Ⅰ. バイオマスエネルギー利用のコスト構造

（1）コスト構造の全体
バイオマスエネルギー利用に必要なコストは、おもに設備費（初期費用）とランニングコストの2つに分けることができます。

○ 設備費（初期費用）
 ・ 機器費用（ボイラー本体、配管等の付帯設備費用）
 ・ 建屋、サイロ
 ・ 建設費（建設費には計画・設計費用を含む）

○ ランニングコスト
 ・ 燃料費
 ・ 運転・維持管理費（メンテナンス、電気代、灰の処理費用）
 ・ 固定資産税等
（2）kWあたりの標準コスト
次に、これらの標準的なコストを見てみましょう。
現在市販されている木質バイオマスボイラーは、高い発熱効率（80%以上）で、自動運転・
自動制御の能力を備えた機種がほとんどです。ここで想定するのもそうしたボイラーです。

ボイラー本体の価格は、同じ出力規模のものであっても、対応できる燃料の幅（水分量、
チップ形状）や、自動制御の度合いなどの仕様の違いにより変動します。水分の高い燃料
にも対応できるボイラーは、相対的に高くなります。

バイオマスボイラーのイニシャルコストは、燃料の種類（チップ、ペレット、薪）によ
っても異なりますが、ここでは今後もっとも普及が拡大するとみられるチップボイラーを
想定します。

① 設備費（初期費用）
残念ながら、日本ではバイオマスボイラーのイニシャルコストの一般的な傾向について、
信頼できる定量的なデータが存在しません。

今回行った事例調査（訪問調査及びアンケート調査）とメーカーヒアリングによれば、
300kWボイラーの場合の一般的な設備費は、7,000万〜1億2,000万円、kW当たり単価で23
万円〜40万円でした（図表2.1）。

後ほど分析しますが、ドイツやイギリスにおける同規模の設備費は1,000万円〜1,500万
円、kW当たり4〜5万円程度です。つまり、日本のバイオマスボイラー設備費は、欧州
の4〜8倍にも達します。このコストをどう圧縮できるかによって、今後の普及が大きく
左右されると言えるでしょう。

なお、バイオマスの設備費は、一般に規模が大きくなるとkW当たりのコストは低減し
ていく関係が見られます（図表2.2）。

図表2.1 日本におけるバイオマスボイラーの標準的な設備費（300kWの例）

<table>
<thead>
<tr>
<th>費用項目</th>
<th>価格</th>
<th>（参考）ドイツ（270kW）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボイラー本体価格</td>
<td>3,000〜4,000万円</td>
<td>585万円（4万5,000ユーロ）</td>
</tr>
<tr>
<td>工事費</td>
<td>2,000〜4,000万円</td>
<td>42.2万円（3,250ユーロ）</td>
</tr>
<tr>
<td>サイロ・建屋</td>
<td>2,000〜4,000万円</td>
<td>351万円（2万7,000ユーロ）</td>
</tr>
<tr>
<td>合計</td>
<td>7,000万〜1億2,000万円</td>
<td>978.2万円（7万5,250ユーロ）</td>
</tr>
<tr>
<td>kW単価</td>
<td>23〜40.0万円/kW</td>
<td>3.6万円/kW（278ユーロ）</td>
</tr>
</tbody>
</table>

（注）1ユーロ＝130円で計算。ドイツの場合、ボイラー本体価格にチップ搬送装置等が含まれている。
第2章 コスト構造

図表 2.2 バイオマスボイラーの定格出力と出力あたりのイニシャルコストの関係
（イギリス）

注）1英ポンド＝125円で計算。設備費はイギリスでの価格で、日本のものよりかなり安くなっている。
（出所）「Biomass heating: A practical guide for potential users」Carbon Trustより作成

（3）ランニングコスト

① 燃料費

チップ燃料については、フィンランドやスウェーデンなどでは、エネルギー単位(kWh)あたりの価格で取引が行われていますが1、ドイツなどでは日本同様、エネルギー単位ではなく重量ベースで表記・取引されています。本テキストにおいても、重量ベースでコストを表記します。その場合の基準水分は、35%となっています。バイオマス燃料利用では、水分を用います（第4章「燃料の特徴と品質」参照）。

日本での木質チップの取引価格は、おおむね8,000〜15,000円/tです。
ただし、その際の水分は、35%から55%までまちまちです。35%程度に管理されて取引されている事例の方が稀なのが実態です。
燃料利用として標準的な35%の水分に管理されたチップは、日本ではかなり高品質な部類に該当します。その価格を12,000円/tとすると、欧州の一般的なチップ価格に相当することになります。

トン当たりの木質チップの低位発熱量を3,240kWh（水分35%）、12,000円、重油価格を80〜85円/Lとした場合、木質チップは重油価格の5割弱の価格となります。

1 IEA Bioenergy Task40: Sustainable International Bioenergy Tradeにおいては、GJあたりの表示になっている。エネルギー単位で取引は、燃料供給者が一者である場合に可能となる取引形態。
Ⅰ．バイオマスエネルギー利用のコスト構造

木質チップの燃焼において、水分の管理は決定的に重要です。木質バイオマスを普及させていくためには、適切に水分を管理することにより質のよいチップを生産し、適正な価格を形成していくことが重要です。

水分35%のチップ価格12,000円/tは、スギで立方当たりに換算すると約6,000円/m³に相当します。ただし、これはチップ化コストも含んだ価格である点に留意する必要があります。

他方、ペレットの価格については、今回の事例調査では、ボイラー向けを含む小口の配送価格は45,000円/t、やや大口のボイラー向けは40,000円弱/tが一般的でした。この水準では、重油よりも割高になるため、ペレットの商業利用は不可能です。

灯油と同等の燃料単価になるのは、およそ37,000円/tになりますので、経済的なベースでペレットボイラーの普及を図るためには、少なくとも25,000〜30,000円/t程度まで販売価格を引き下げる必要があります。

図表 2.3 燃料別のエネルギー価格の比較（円/kWh）

（出所）A重油価格：資源エネルギー庁石油製品価格調査による産業用小型ローリー搬入価格、灯油価格：石油情報センターによる民生用灯油配達価格。燃料あたりの熱量は、A重油：10.8kWh/L、灯油：10.2kWh/L、ペレット：3.24kWh/kg、チップ：4.20kWh/kg（水分35%）として計算。
② 保守・点検費用

保守・点検費用は、ボイラーメーカー等との契約内容により大きく異なります。特に、一年間に複数回、東京から技術者が出張してメンテナンスを行うなどのケースでは、ボイラーや台あたりの保守・点検費用は100万円にもなります。

反対に、木質バイオマスボイラーナの特性をよく理解し、適切な運転を行い、かつ日常的な保守・点検は自ら行い、一部の専門的な保守・点検についてのみ、適切な訓練を受けた地域企業を発掘して委託することができれば、保守・点検費用を10万〜30万円程度に抑えることができます。

なお、ボイラーや指定範囲外の水分のチップを投入したり、負荷を頻繁に上下させる運転方法は、不完全燃焼を招き、タールやススの付着量を増加させます。また、耐火壁に負担がかかるなど、長期的には部品交換の頻度が上がってしまい、ボイラーや適切に運転することは、保守・点検費用を一定の範囲内に抑えるための不可欠の前提であることをよく理解しておく必要があります。

③ 灰処理費

ボイラーや燃焼灰は産業廃棄物として処理しなければならないため、処理委託費用が発生します。

灰の発生量は燃料の質に依存し、日本のバイオマスボイラーナで使用されることが多い樹皮付きのチップでは、灰分量は10〜25%程度です。

灰の処理費用単価については、10,000円/t程度が相場のようですね。
Ⅰ. バイオマスエネルギー利用のコスト構造

④ 電気代

現代的な木質バイオマスボイラーは全自動運転となっており、燃料の搬送から燃焼制御の各プロセスが、電子的に制御されています。そのため、電力容量及び電気料金は比較的大きくなります。

ボイラーのカタログには、定格電気容量（kW）が示されていますが、それらの内訳は以下のようになっています（図表2.5）。

また、これらボイラーメーカーで消費される電力以外にも、循環ポンプ、熱量メーター、電灯、サイロシャッター等でも電力が必要です。

図表2.5 木質チップボイラーの電気容量の内訳（240kW）

<table>
<thead>
<tr>
<th>内訳</th>
<th>電気容量（kW）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 排ガスファン</td>
<td>1.5</td>
</tr>
<tr>
<td>2. 燃料空気ファン</td>
<td>0.18</td>
</tr>
<tr>
<td>3. ストーカースクリューモーター</td>
<td>0.25</td>
</tr>
<tr>
<td>4. ドージングスクリューモーター</td>
<td>0.25</td>
</tr>
<tr>
<td>5. サイロディスチャージモーター</td>
<td>0.55</td>
</tr>
<tr>
<td>6. スワイベルアームモーター</td>
<td>1.1</td>
</tr>
<tr>
<td>7. 火格子油圧ポンプ</td>
<td>0.37</td>
</tr>
<tr>
<td>8. 火格子灰出しスクリュー</td>
<td>0.25</td>
</tr>
<tr>
<td>9. 熱源ポンプ</td>
<td>0.4</td>
</tr>
<tr>
<td>10. エアーコンプレッサ</td>
<td>1.5</td>
</tr>
<tr>
<td>合計</td>
<td>5.3</td>
</tr>
</tbody>
</table>

（出所）トモエテクノ社資料

したがって、事前に電気代を正確に推計することは難しいですが、ボイラーメーカーでは経験的に、ボイラー電気容量（kW）に稼働時間（h）を乗じて、消費電力量（kWh）を見積もりており、実績ベースでも大きな差は生じていないようです。

仮にボイラーの年間稼働時間を2,500時間と設定すると、年間の電気料金は定格出力240-360kWで、26.5万円程度になります（図表2.6）。

図表2.6 バイオマスボイラーの電気容量の例

<table>
<thead>
<tr>
<th>ボイラー定格出力</th>
<th>電気容量（kW）</th>
<th>年間稼働時間（h）</th>
<th>年間電気料金（円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-180kW</td>
<td>4.6</td>
<td>2,500</td>
<td>230,000</td>
</tr>
<tr>
<td>240-360kW</td>
<td>5.3</td>
<td>2,500</td>
<td>265,000</td>
</tr>
<tr>
<td>450-550kW</td>
<td>7.9</td>
<td>2,500</td>
<td>395,000</td>
</tr>
<tr>
<td>700-900kW</td>
<td>14</td>
<td>2,500</td>
<td>700,000</td>
</tr>
</tbody>
</table>

（出所）バイオマスボイラーの電気容量は、トモエテクノ社パンフレットより、シュミット社製UTSRシリーズの数字を採用し、電気料金は20円/kWhで計算した。

2 環境エネルギー普及㈱へのヒアリングによる。
コラム [チップボイラーの設備費用]

1. はじめに
日本では、これまで高性能のバイオマスボイラーが、チップボイラー100数十台、ペレットボイラーが500台程度導入されていますが、その設備費用については、体系的に整理されておらず、ボイラーの導入を検討しているが、その相場感を得ることは困難でした。
株式会社森のエネルギー研究所では、過去にボイラーメーカー等から収集・審査した見積りデータを元に、設備費用について精度の高いデータのみを抽出して分析を行っています。
分析対象とした設備費等のデータは全部で28件（海外製26、国内製2）で、全てチップボイラーニます。データは、各社の見積書を参照しているため、価格根拠は見積価格であり、実勢価格ではないことに注意が必要です。

2. ボイラー本体価格
まず、図表Aにボイラー本体価格と出力の関係を示しました。黒点は海外製、緑点は国内製を示します。図解は、2件のみのデータですが、海外製とほとんど変わらない水準であることが分かります。
単位出力あたりのボイラー本体価格については、出力規模が大きくなると、低下傾向にあることが分かります（図表B）。具体的には、100kWクラスでは167,136円/kW、1,000kWでは79,000円/kWと、出力クラスが小さい機種は単価が高いことが分かります。なお、100～1,000kWあたりの総平均価格は105,792円にいました。

<table>
<thead>
<tr>
<th>出力（kW）</th>
<th>価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>167,136</td>
</tr>
<tr>
<td>200</td>
<td>128,434</td>
</tr>
<tr>
<td>300</td>
<td>98,649</td>
</tr>
<tr>
<td>400</td>
<td>141,536</td>
</tr>
<tr>
<td>500</td>
<td>69,424</td>
</tr>
<tr>
<td>900</td>
<td>56,363</td>
</tr>
<tr>
<td>1000</td>
<td>79,000</td>
</tr>
<tr>
<td>平均</td>
<td>105,792</td>
</tr>
</tbody>
</table>

※本コラムは、株式会社森のエネルギー研究所 大野氏作成のリポート「チップボイラーの出力あたり単価について」を引用しています。
3. 総設備費
(1) 内訳
次に、総設備費をみてみましょう。ここには、ポイラ本体価格以外に、機器搬入費、試運転調整費、機械室、サイロ、煙道、煙突工事、設備・配管工事、土木工事、電気工事、設計費・管理費・諸経費等、既設配管への繋ぎ込み費用、熱管理システム、バックアップボイラー、バックアップボイラー煙突、建屋等になります。
図表Cには、総額に対する各種費用が占める割合を示しました。最も大きな割合を占めるのは、ポイラ本体価格の40%であり、次に機械室（サイロ込み）が32%、設備・配管工事が14%と続きます。
なお、本分析では、バックアップボイラー、建屋についてはデータ個数が少なく、平均値の精度に影響を与えるため、総額から除外していますが、これらの設備が必要な場合は、相応のコスト割合を占めることが必要となります。
(2) 総額
総設備費と定格出力の関係を、図表Dに示します。設備費は個別ベースに条件が大きく変動するため、ベース每に費用が異なることに注意が必要です。今回のデータでは、小規模でも総額が1,000kWクラスと同等のケースもあり、同規模でもケースによって、価格帯の幅があることが分かります。
なお、メーカーによっては、ポイラ本体と最低限の工事（機械室、配管等）以外は、地域の設計事務所、設備業者、土木工事業者に委託するケースがあり、その場合の委託費は以下に反映されていません。
図表D ボイラーの定格出力と総設備費の関係
<table>
<thead>
<tr>
<th>出力（kW）</th>
<th>価格（海外）</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>¥258,515</td>
</tr>
<tr>
<td>200</td>
<td>¥377,456</td>
</tr>
<tr>
<td>300</td>
<td>¥208,438</td>
</tr>
<tr>
<td>400</td>
<td>¥346,676</td>
</tr>
<tr>
<td>900</td>
<td>¥76,019</td>
</tr>
<tr>
<td>1000</td>
<td>¥204,000</td>
</tr>
<tr>
<td>平均</td>
<td>¥245,184</td>
</tr>
</tbody>
</table>
図表Eに、出力每（100kW単位）のkWあたり総額コスト平均を示します。総額を含めると、本体価格平均の場合と異なり、規模増大と価格低減の関係性は明確にはなりませんでした。これは、ケースごとに工事条件が大きく異なることが原因だと思われます。
(注) ただし、平均を算出する際、ボイラー本体価格以外の費用が極端に少ない（地元業者へ工事等委託している）ケース（6件）は除外しています。平均算出に使用したデータは、28件中、22件です。
※本コラムは、株式会社森のエネルギー研究所 大野氏作成のリポート「チップボイラーの出力あたり単価について」を引用しています。
第2章 コスト構造

II. 収支計画手法

（1）収支計画策定にあたっての考え方

以上のようなるコスト構造を踏まえ、化石燃料ボイラーに替わって、木質バイオマス ボイラーを導入する場合のベースとなる収支計算をします。

本テキストでは、バイオマス燃料費を化石燃料費価格の5割（≒12,000円/t、水分35%）と仮置きし、一定の年間稼働時間を想定して、化石燃料とトータルコストが同じになる期間（投資回収年）を計算しました。

図表2.7に示すように、設備費はバイオマスボイラーの方が高いですが、ランニングコ ストは燃料費の削減効果で安くなります。したがって、一定時間使用すれば、このランニ ングコストの削減費用が累積されて、設備費の差額を償却することができます。つまり、 年間の稼働時間を長く確保することができれば、それだけ償却を早めることができるでしょう。

図表2.7 バイオマスボイラー導入による累積コスト削減のイメージ

（出所）「鹿児島県木質バイオマス利活用指針」（鹿児島県）を改変して作成
（2）収支計画の手順

それでは、次に基礎的な収支計画を検討してみましょう。

実際の収支計画策定の手順は、図表2.8のとおりになります。以下、この手順に従って、300kWの中規模チップボイラーを例にとり、計算をしてみます。

図表2.8 収支計画策定の手順

＜ステップ①:設備費用差額の計算＞
チップボイラーと比較対象になる化石燃料ボイラーの設備費用の差額を計算します。

＜ステップ②:ランニングコスト削減額の計算＞
チップボイラーの導入により期待されるランニングコストの削減額を計算します。

＜ステップ③:単純投資回収年数の計算＞
初期費用差額を、ランニングコスト削減額で除して単純投資回収年数を計算します。

＜ステップ④:結果の評価・分析＞
投資回収年が償却期間以内に納まっているかを確認し、稼働時間や初期費用などを変化させ、より有利な計画のシミュレーションをします。

① 初期費用差額の計算

ここでは全国的な事例調査等に基づき、300kWの定格出力の場合の設備費用を、チップボイラーで約9,000万円、化石ボイラーは300万円とします。

また、現状では木質バイオマスボイラーの導入は、公的な補助金が活用できるケースが多いので、ここでは50%の補助金を活用し、設備費用が4,500万円で済んだとします。
このように仮定すると、設備費用の差額は、以下のとおり計算できます。

\[
\text{設備費用差額 = チップボイラー初期費用（自己負担分） - 化石ボイラー初期費用}
\]
\[
= 90,000,000 \text{円} \times 1/2 - 3,000,000 \text{円}
\]
\[
= 42,000,000 \text{円}
\]

正確には、単純投資回収年を計算することになります。
2 ランニングコスト削減額の計算

ランニングコストの内、最も大きな割合を占めるのは燃料費ですが、使用する燃料の量はボイラーの稼働時間で決まります。

ここでは、年間の稼働時間を2,500時間（日平均6.8時間）と置いて、計算をします。

使用する燃料量は、ボイラーの定格出力に稼働時間を乗じて必要な熱量を計算し、それぞれの燃料の持つ熱量（低位発熱量）で除して計算します（図表2.9）。

チップの場合の必要な燃料費は、以下のとおり計算できます。

燃料費 = 必要燃料量 × 燃料単価

= (必要熱量 ÷ チップ低位発熱量) × 燃料単価

= ((定格出力 × 稼働時間) ÷ チップ低位発熱量) × 燃料単価

= ((300kw × 2,500h/年) ÷ 3.24kWh/kg) × 12,000円/t

<table>
<thead>
<tr>
<th></th>
<th>①定格出力 (kW)</th>
<th>②稼働時間 (h/年)</th>
<th>③=①×② 必要熱量 (kWh/年)</th>
<th>④必要燃料量 (チップ: t/年、重油: L/年)</th>
<th>⑤燃料費 (円/年)</th>
</tr>
</thead>
<tbody>
<tr>
<td>チップボイラー</td>
<td>300</td>
<td>2,500</td>
<td>750,000</td>
<td>231</td>
<td>2,777,778</td>
</tr>
<tr>
<td>重油ボイラー</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72,718</td>
<td>6,181,039</td>
</tr>
<tr>
<td>差額</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,403,261</td>
</tr>
</tbody>
</table>

注）燃料の低位発熱量は、チップ：3.24kWh/kg、重油：10.31kWh/Lとした。
また、燃料の価格はチップ12,000円/t、重油85円/Lとした。

この他のランニングコストとして、チップボイラーの場合は、灰処理費用や保守・点検費用、電気代などを見込んでおく必要があります。
・灰の発生量は使用燃料の2%、灰の処理費用は10,000円/tとしました。
・保守・点検費用は、日常的なものは自社で行い、年に一度の定期点検をメーカーに委託することを前提に、15万円/年としました。
・電気代は、電気容量（300kWボイラーの場合5kW程度）に稼働時間と電気料金単価（20円/kWh）を乗じて計算しました。
図表2.10 その他のランニングコストの算出

<table>
<thead>
<tr>
<th>項目</th>
<th>計算式</th>
</tr>
</thead>
<tbody>
<tr>
<td>灰処理費用</td>
<td>灰発生量×灰処理費用単価=(231t×0.02)×10,000円/t=46,200円</td>
</tr>
<tr>
<td>保守・点検費用</td>
<td>15万円</td>
</tr>
<tr>
<td>電気代</td>
<td>電気容量×稼働時間×電気料金単価=5kW×2,500時間×20円/kWh=250,000円</td>
</tr>
</tbody>
</table>

注）電気代（電気使用量）は、ボイラーの使用条件により変動するが、経験的に電気容量に稼働時間を乗じて求めた値と概ね一致するため、本テキストでもその計算方法を採用した。

以上の前提を元に、ランニング費用削減額を計算すると以下のようになります。

ランニングコスト削減額 = 化石ボイラーランニングコスト
- チップボイラーランニングコスト
 = 化石ボイラー燃料費
 - (チップボイラー燃料費 + 灰処理費 + 保守・点検費用 + 電気代)
 = 6,181,039円 - (2,777,778円 + 46,200円 + 150,000円 + 250,000円)
 = 2,957,061円

③単純投資回収年数の計算

最後に、以上の計算を元に、③単純投資回収年数を計算すると以下のようになります。

単純投資回収年数 = (初期費用差額) ÷ (ランニングコスト削減額)
 = 42,000,000円 ÷ 2,957,061円 = 14.2年

④結果の評価・分析

以上の計算では、単純投資回収年数は14.2年となり、ボイラーの償却年数が15年であることから、一応投資は回収できる計算となります。

ただし、ここでは支払金利や租税公課（主に固定資産税）などを見込んでおらず、キャッシュフローはこれより厳しくなることに留意しなければなりません。

そこで、今度は稼働時間を変化させ、単純投資回収年数を試算してみたのが、図表2.11になります。

例えば年間の稼働時間が2,000時間（=日平均5.48時間）の場合、投資回収には18年かかることになります。
反対に、十分な熱需要があり、3,000時間（日平均8.2時間）程度の稼働時間を確保することができれば、投資回収年数は12年弱となり、チップボイラーの導入がより魅力的になります。

図表2.11 稼働時間別の投資回収年数の試算

<table>
<thead>
<tr>
<th>年間稼働時間</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>設備費差額（万円）</td>
<td></td>
<td>4200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>チップ使用量（t/年）</td>
<td>139</td>
<td>185</td>
<td>231</td>
<td>278</td>
</tr>
<tr>
<td>年間ランニングコスト削減費用（万円）</td>
<td>171</td>
<td>234</td>
<td>296</td>
<td>358</td>
</tr>
<tr>
<td>投資回収年数</td>
<td>24.5</td>
<td>18.0</td>
<td>14.2</td>
<td>11.7</td>
</tr>
</tbody>
</table>

次に、日本の現状は、諸外国に比べて初期費用が割高であるため、仮に、今後普及が進むことで、設備費用がドイツやイギリスの2〜3倍程度、300kWのチップボイラーで3,000万円に下がったと想定して、収支を計算してみましょう。この場合、補助金の導入は前提としていません。

同じく稼働時間を変化させて単純投資回収年数を試算すると、年間3,000時間（平均8.2時間/日）で8年以内、年間2,000時間（平均5.5時間/日）で12年以内で投資回収が可能となりました。このような状態になれば、民間事業体にとっても魅力的な投資になり、飛躍的に導入量が増えることが期待できます。

図表2.12 日本における投資回収年試算のための前提条件（設備費低減ケース）

<table>
<thead>
<tr>
<th>年間稼働時間</th>
<th>1500</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>設備費差額（万円）</td>
<td></td>
<td></td>
<td></td>
<td>2700</td>
</tr>
<tr>
<td>チップ使用量（t/年）</td>
<td>139</td>
<td>185</td>
<td>231</td>
<td>278</td>
</tr>
<tr>
<td>年間ランニングコスト削減費用（万円）</td>
<td>171</td>
<td>234</td>
<td>296</td>
<td>358</td>
</tr>
<tr>
<td>投資回収年数</td>
<td>15.8</td>
<td>11.6</td>
<td>9.1</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Ⅲ．欧州におけるバイオマスエネルギー利用のコスト構造

（1）標準的なコスト構造

日本では、バイオマスの設備費、ランニングコストとともに、まだまだ高い水準にありますが、ここでは低コスト化により商業利用が進んでいる欧州におけるコスト構造を紹介します。

規制や社会条件等が異なるため単純に比較できるとは限りませんが、日本においてバイオマス熱利用を本格的に普及させるためのコストを考えるうえでの参考にしてください。

ドイツとイギリスの標準的なコストを調査した結果、ドイツ・イギリスともにコストはほぼ同じ水準にあることが分かりましたので、以降は、イギリスの事例を中心に紹介します。

主なデータは、イギリスにおいて再生可能エネルギー導入や省エネの取組を支援している「Carbon Trust」という団体が発行している「Biomass heating: A practical guide for potential users」という冊子から引用しています。

① 設備費用

400kWのボイラーの設備費用は、総額で1,870万円です。

その内訳は、ボイラー本体（730万円：39%）、建屋（510万円：27%）、燃料貯蔵庫＝サイロ（215万円：12%）、設計、施工管理、手数料（105万円：6％）、燃料搬送装置（100万円：5％）等になります（図表2.13）。

http://www.carbontrust.com/media/31667/ctg012_biomass_heating.pdf
図表2.13 イギリスにおける典型的なバイオマスボイラーの設備費（400kW）

<table>
<thead>
<tr>
<th>費目</th>
<th>総額（円）</th>
<th>kW単価（円/kW）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボイラー</td>
<td>7,300,000</td>
<td>18,250</td>
</tr>
<tr>
<td>燃料搬送</td>
<td>1,000,000</td>
<td>2,500</td>
</tr>
<tr>
<td>燃料貯蔵</td>
<td>2,150,000</td>
<td>5,375</td>
</tr>
<tr>
<td>建屋</td>
<td>5,100,000</td>
<td>12,750</td>
</tr>
<tr>
<td>集塵機</td>
<td>300,000</td>
<td>750</td>
</tr>
<tr>
<td>燃焼</td>
<td>800,000</td>
<td>2,000</td>
</tr>
<tr>
<td>設計、施工管理、手数料</td>
<td>1,050,000</td>
<td>2,625</td>
</tr>
<tr>
<td>輸送</td>
<td>350,000</td>
<td>875</td>
</tr>
<tr>
<td>配管工事</td>
<td>200,000</td>
<td>500</td>
</tr>
<tr>
<td>電気工事</td>
<td>450,000</td>
<td>1,125</td>
</tr>
<tr>
<td>合計</td>
<td>18,700,000</td>
<td>46,750</td>
</tr>
</tbody>
</table>

（出所）「Biomass heating: A practical guide for potential users」Carbon Trust

② ランニングコスト

○ 燃料費

木質チップの工場着価格は、水分35%が標準で、7,500〜9,000円/t程度（工場着、税抜き）で取引されています。ただし、ここでは、日本のチップ価格に合わせて、12,000円/tで計算しました。

なお、ペレットについては、20,000円/tが相場でしたのが、近年上昇傾向にあり、ドイツなどでは25,000円/tにまで価格が上昇しています。

○ 保守・点検費用

保守・点検費用は、400kW程度の小型のボイラーでは、自社による日常的な点検による人件費（0.5〜1.5人工/月）に加え、メーカー等による年に一度の定期点検の合計で10万円/年弱の費用が計上されています。
Ⅲ. 欧州におけるバイオマスエネルギー利用のコスト構造

（2）収支計算例

ここでは、Carbon trustのマニュアルに基づき、400kWのチップボイラーを例に、収支計算の例を見てみましょう。

① 設備費用差額の計算

イギリスでは、400kWのチップボイラーの設備費は約2,500万円です。一方、化石燃料ボイラーの設備費用は、400万円です。したがって、設備費用の差額は以下のとおりです。

設備費用差額 = チップボイラー初期費用 - 化石ボイラー初期費用
= 25,000,000円 - 4,000,000円
= 21,000,000円

② ランニングコスト削減額の計算

イギリスでの標準的な稼働時間は以下のとおりに設定されています。
・一般的な建築物（General occupying building）・・・約1,700時間
・サービス利用（温水プールや病院など：Service applications）・・・約4,000時間
・産業用プロセス熱（Process applications）・・・約5,200時間

ここでは、サービス利用の場合を想定して、4,000時間の稼働時間で計算します。また、チップ価格は、日本の水準に合わせて12,000円/t（35%水分）としました。5

図表 2.14 燃料費の算出（イギリス400kWボイラーの場合）

<table>
<thead>
<tr>
<th></th>
<th>①定格出力（kW）</th>
<th>②稼働時間（h/年）</th>
<th>③=①×②必要熱量(kWh/年)</th>
<th>④必要燃料量（チップ：t/年、重油：L/年）</th>
<th>⑤燃料費（円/年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>チップボイラー</td>
<td>400</td>
<td>4,000</td>
<td>16,000</td>
<td>494</td>
<td>5,925,926</td>
</tr>
<tr>
<td>灯油ボイラー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>差額</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,769,822</td>
</tr>
</tbody>
</table>

（注）チップ：12,000円/t、灯油：625円/L（0.5ポンド/L）

5 Carbon Trustのマニュアルでは、7,500円/t（60ポンド/t）が標準的な価格とされている。
この他のランニングコストとして、保守・点検費用75,000円/年が計上されています。灰は、建築廃材を含まないチップを前提としており、林地に還元できるため、処理費用は計上されていません。以上の前提を元に、ランニング費用削減額を計算すると以下のようになります。

ランニングコスト削減額 = 化石ボイラーランニングコスト - チップボイラーランニングコスト
= 化石ボイラーランニングコスト - (チップボイラーランニングコスト + 保守・点検費用)
= 9,695,747円 - (5,925,926円 + 75,000円)
= 3,769,822円

③ 単純投資回収年数の計算
最後に、以上の計算を元に、単純投資回収年数を計算すると以下のようになります。

単純投資回収年数 = (初期費用差額) ÷ (ランニングコスト削減額)
= 21,000,000円 ÷ 3,769,822円 = 4.3年

④ 結果の評価・分析
イギリスの事例では、4.3年という極めて短期間での投資回収が期待できることが分かりました。次に、年間の稼働時間として、一般的な建築物の1,700時間、産業用プロセス熱利用の5,200時間、そして先ほど日本の収支計算で設定した2,500時間の場合を計算したのが、図表2.15となります。

<table>
<thead>
<tr>
<th>年間稼働時間</th>
<th>1,700</th>
<th>2,500</th>
<th>4,000</th>
<th>5,200</th>
</tr>
</thead>
<tbody>
<tr>
<td>設備費差額（万円）</td>
<td></td>
<td></td>
<td>2,100</td>
<td></td>
</tr>
<tr>
<td>チップ使用量（t/年）削減費用（万円）</td>
<td>210</td>
<td>247</td>
<td>494</td>
<td>642</td>
</tr>
<tr>
<td>年間ランニングコスト削減費用（万円）</td>
<td>153</td>
<td>181</td>
<td>369</td>
<td>642</td>
</tr>
<tr>
<td>投資回収年数</td>
<td>10.3</td>
<td>8.7</td>
<td>4.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Ⅳ．コスト低減に向けて

これまで見てきたように、バイオマスポイラーへの投資を経済的に見合ったものにするためには、バイオマスポイラーの「設備費用」を可能な限り下げ、それに対する毎年の「ランニングコスト削減額」を可能な限り増やす努力が必要です。後者のランニングコストについては、適正な「燃料費」の下で「稼働時間」をしっかりと確保することがポイントになります。また運転面では、木質バイオマスポイラーの特性をよく理解して適正運転に努めることが稼働時間の確保と、保守・点検費の削減を通じてランニングコストの抑制に寄与します。また、更に保守・点検を自社で行うことにより、この費用を削減することができます。

以下に、それぞれの項目について、コスト低減に向けた方向性を見てみましょう。

（1）設備費用

日本の木質バイオマスポイラーの初期費用は欧州などと比較すると極めて高い水準であり、ボイラー本体価格で6〜8倍、総工費で10倍近い差があります。バイオマスポイラーの普及のためには、この初期費用の削減が急務です。ただし、単純に高いか安いかではなく、期待される性能を十分に引き出す設備・設計になっていることを確認することが不可欠です。

欧州では、ボイラーの規格があり、最低限の性能が保証されていますが、日本にはそのような規格が存在していません。そのため、価格の高い欧州製の輸入ボイラーを選択して比較的安価な国産ボイラーを選択すると、性能面で劣った買い物になる可能性があります。特に、国産ボイラーの中には、焼却炉の延長で設計されているため、エネルギーを得るためと言うよりも廃棄物の減容が目的となっておりエネルギー効率が低いものが散見される点に注意が必要です。

なお、設備費用の抑制のためには、第3章で解説しているような熱需要の適切な把握により、出力を抑ええた小型のボイラーを導入するといった努力も重要です。

また、建屋やサイロなどについても、欧州と比較すると、大きなコスト削減余地があります。日本では、これらの工事についてノウハウの蓄積が十分ではないことに加え、補助金を活用する際に、コストをかけてでも可能な限り安全かつ頑丈なものを建設するケースがあり、全体的なコストを押し上げている可能性があります。第6章で解説しているような発注契約の方法のあり方と合わせて、契約や保険でヘッジできるリスクを洗い出し、初期費用の一つ一つの項目を再点検していく作業が重要です。

以上のことの前提として、可能な限り先行的に導入している施設について現地に足を運び、価格や運営状況等を調べることが必要です。
（2）稼働時間

稼働時間の確保も、コスト削減の重要な要因です。

これまで見てきたように、稼働時間により、収支内容は大きく変化します。この点、温泉施設などは、年間を通して熱需要がありますので、バイオマス導入が容易になります。

稼働時間の確保で重要するのが、ボイラーの規模です。

比較的規模の小さなボイラーでベース・ロードを負担し、化石燃料ボイラーをバックアップに、需要のピークに対応するという方法が望ましいでしょう。

本テキストでは、第3章において熱需要の把握方法や、ピークカット等による適切な規模のボイラーの導入についても解説しています。これらを参考に、適切な稼働時間が確保できるように、計画してください。

（3）燃料単価

チップ価格は、35%水分で12,000円/tが相場となっています。この水準は、化石燃料の5割以下であり、燃料価格そのものはすでにバイオマスは相当有利です。

ただし、現状では水分調整のノウハウが十分ではなく、水分管理ができない、水分調整にコストがかかりすぎるなどの問題を抱えています。また、燃料供給者が所有するチッパーの稼働率が高くなくコスト高になることも起こっています。チップの生産方法や水分調整の方法については、第5章を参照してください。
木質バイオマスボイラーは化石燃料と大きく異なり、急激な出力調整が苦手です。また、一定の出力以上で運転することが前提です。

毎朝起動して毎晩停止するような運転パターンをDSS運転（Daily Start and Stop：日次発停）と呼びますが、木質バイオマスボイラーは基本的に、DSS運転には向いていません。木質燃料は着火と出力上げに時間がかかるうえ、発停時の不完全燃焼の排気管理が難しく、毎日の温度変化で炉内の耐火レンガが徐々に傷むなど、コストと環境、管理の面で問題が多いからです。

つまり、木質バイオマスボイラーは一定の出力以上で連続運転することがふさわしく、できるだけベース・ロード（定常負荷）に近い形で運用するよう設計することが肝心です。

設計に際しては、こうしたバイオマスボイラーの特性を踏まえて、ボイラーと貯湯槽の大きさと熱量を考慮することが特に重要となっています。だからこそ、バイオマスボイラーの計画においては、熱需要を的確に把握する必要があるのです。

本章では、熱需要をどう把握し、分析したらいいかについて解説します。

第3章 熱需要の把握

I. 化石燃料ボイラーとの違い

（1）出力調整ができるか

まず技術面から、化石燃料ボイラーと木質バイオマスボイラーでは、図表3.1のように本質的に大きな違いがあります。

<table>
<thead>
<tr>
<th>側面</th>
<th>化石燃料</th>
<th>木質燃料</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料形態</td>
<td>バーナーで微粒化噴射（石油・石炭）され、良好に空気と混合</td>
<td>大きさと熱量を塊で持つ固体燃料</td>
</tr>
<tr>
<td>燃焼のしかた</td>
<td>火室に噴射されながら瞬時に完全燃焼</td>
<td>表面から内部へ燃焼進行。一次燃焼（ガス化）と二次燃焼（完全酸化）</td>
</tr>
<tr>
<td>火室と燃焼形態</td>
<td>火格子上を時間かけて順次移動。火室内部に燃料の滞留量がある</td>
<td>火格子上を時間かけて順次移動。火室内部に燃料の滞留量がある</td>
</tr>
<tr>
<td>火室壁</td>
<td>水管や炉筒煙管など、火炎を囲む鉄等から直接水に伝熱</td>
<td>燃焼専用の耐火物壁（伝熱は後段）</td>
</tr>
</tbody>
</table>
これら特性の違いから、熱源としての木質バイオマスボイラーの使い勝手は、石油・ガスとは全く異なってきます。木質に固有の制約を十分に踏まえておかないと、図表3.2のような失敗につながってしまいます。実際に、このようなことは国内では頻繁に起こっています（第8章参照）。

| 図表3.2 木質バイオマスボイラーの特性と国内における失敗事例 |
|----------------------|----------------------|
| **木質バイオマスボイラーの特性・制約** | **失敗の例** |
| 出力変動や起動停止は時間がかかり、容易にできない | その時々の需要に対し過大・過小な出力で無駄の多い燃焼 |
| 低出力では、不完全燃焼になる。制御された燃焼が維持できない | 黒煙の排出、タール・ススのボイラー内・煙道への付着 |
| 出力の変動速度に上限があり、緩やかな変化を必要とする | 耐火物の早期劣化・破損 |

これらへの対処としては、以下の二つがあります。
①どのような負荷変化があるか、即ち時間帯毎にどのような熱の使われ方をしているかを知り、貯湯槽を入れる等で、木質バイオマスボイラーの急な負荷変動を減らすこと。
②夜間や休日、春夏秋など、熱負荷の低い時間パターンや長さを知り、木質バイオマスボイラーが最低出力以下にならない範囲で連続運転できるよう、ボイラーと貯湯槽の組み合わせ等とすること。

（2）稼働率か容量か
もう一つの大きな違いは、容量を中心に設計するか、稼働率を中心に設計するかです。図表3.3のように、初期投資とランニングコストが、化石燃料とバイオマスではまったく対照的です。このため、設計の考え方がらっと変わります。

| 図表3.3 化石燃料と木質燃料の初期投資と燃料費の違い |
|----------------------|----------------------|----------------------|
| **設計の中心観点** | **燃料費** | **設備初期投資** |
| 化石燃料 | 高め、高騰懸念 | 安い（業務用で数百万） |
| 木質燃料 | 相対的に安め | 高い（業務用で数千万〜億）ただし、欧州では日本のコストの5分の1以下 |

<table>
<thead>
<tr>
<th>詳細</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>十分な容量 (ピーク対応、バックアップ)</td>
<td>相対的に安い燃料を使って稼働率を高める（投資回収）</td>
</tr>
</tbody>
</table>
たとえば、出力調整が容易な化石燃料ボイラーの場合は、最大負荷を把握して、大体の容量を入れればすみました。ボイラーの価格も安いため、それでも大きくコスト増にもなりませんでした。ところが、バイオマスの場合は、燃料は安さですが、ボイラーの設備費が高いので、その容量は抑えめにして、稼働率（設備利用率）を高めることが求められます。だからこそ、丹念な熱需要の情報収集と、より細やかな設計や経済計算が求められるのです。

Ⅱ．熱需要の内訳

（1）熱需要の把握と設計の論点

熱需要とは、ユーザーがいつどれだけの熱を使うか、ということです。木質利用において必要な情報は、その内訳や様々な特性です。例えば熱の使途、温度帯、消費率、使用時間、消費率の変化や分布、伝熱方法など多岐に亘ります。

図表3.4に、設計にて考えなければならない論点と、拠り所とする熱需要のデータを示します。

<table>
<thead>
<tr>
<th>熱需要内訳</th>
<th>設計論点</th>
<th>設計での検討例</th>
</tr>
</thead>
<tbody>
<tr>
<td>年総需要</td>
<td>機器サイズ（容量）</td>
<td>年間の単純平均の需要（消費率）を設備の出力とすると、理論的には稼働率100%となるため、一つの目安とする</td>
</tr>
<tr>
<td>月別需要（季節パターン）</td>
<td>機器サイズ（容量）</td>
<td>通年稼動できる分と、冬など季節の単純平均できる分が分かる。冬など需要の多い季節は、月別単純平均が、その季節の稼働率100%となり、一つの目安とする。また、低需要の時期と期間を見て、最低稼動への対策を決める</td>
</tr>
<tr>
<td>月別需要（時間帯パターン）</td>
<td>平準化、機器サイズ（初期費用）抑制</td>
<td>24時間の中で、負荷の高い時間と低い時間を知り、木質バイオマスボイラーの出力と貯湯槽、一部化石燃料ボイラーの組合せで、木質バイオマスボイラー出力を抑えながら負荷のカバーを計画する。また、夜間など最低稼動の長さ等を見れて対策を決める</td>
</tr>
<tr>
<td>需要強度の頻度分布</td>
<td>経済性、稼働率・化石燃料との組合せ</td>
<td>需要の強度（熱負荷の高さ）の時間が年間何時間出現するかを分析する。最も高い熱負荷の発生頻度が低ければ、化石燃料にその部分は任せる、などの定量的な判断を行う</td>
</tr>
<tr>
<td>用途</td>
<td>ピーク抑制、稼働率</td>
<td>特定用途の熱負荷のピークがある場合、それ用の貯湯槽など向け対策を考える</td>
</tr>
<tr>
<td>温度帯</td>
<td>省エネ、ランニング経済性</td>
<td>利用温度帯に合わせて、低めに熱を作る方がエネルギー効率は上がり、ランニング費用は下がる。実際には安全幅を大きくとり、必要以上に温度帯を上げる事例が観察される</td>
</tr>
<tr>
<td>現場状況</td>
<td>需要側省エネ</td>
<td>浴槽に夜間はふたを割けるなど、木質の熱供給の前に、省エネで熱需要を絞る</td>
</tr>
</tbody>
</table>
過去においては、このような熱需要の分析をせずに設計が行われ、結果として過剰設備や、燃料種とボイラー種の不適合による問題などを引き起こしてきています。ユーザーとしては、熱需要の調査分析をして、上記のような論点を踏まえての設計提案や協議を求めることが、失敗しないための防衛手段になります。

（2）熱需要分析と設計の例

熱需要の分析の例として、北海道の温泉宿泊施設の概要をご紹介します。

| 図表3.5 モデル温泉宿泊施設の概要 |
|-----------------|-----------------|
| 施設概要 | |
| 建物 | 900m² | 客室 | 18室 |
| レストラン | 48席 | 温泉営業時間 | 11〜21時 |
| 溫泉のみ利用客 | 平日 | 45〜96人/日 | 休日 | 平日の倍 |
| 最大負荷 | 暖房 | 198kW | 冷房 | 113kW |
| 年間負荷 | 暖房 | 39万kWh | 冷房 | 3万kWh |

施設のデータと立地・気象データ等から試算しました、月別熱需要を図表3.6に、夏季と冬季の1日の時間帯別熱需要を図表3.7〜図表3.9に示します。

図表3.6 月別熱需要

給湯と風呂保温のため熱が恒常的に必要で、通年の熱需要が比較的あります。
冬は暖房負荷が夜の時間を除き大きく、次いで給湯負荷が10時〜23時台に大きいのが分かります。縦軸は時間当たり必要熱量です。休日は客数が増え、負荷が増えます。平均すると平日が194kW、休日が228kW、最大負荷は378kWです。
第3章 熱需要の把握

図表3.9 時間別負荷（夏季平日）

本施設では夏季の平日が、年間で一番負荷が少ない期間です。夏季平日平均68kW、最小負荷は35kWです。

例として、本施設の給湯（と風呂保温）を木質バイオマスボイラーで行うと計画したとします。日中の大きな熱需要（ピーク負荷）に木質バイオマスボイラーの容量を合わせると、設備が大きめで高額になりますから、夜の負荷の少ない時に熱湯を作り貯湯槽に貯めて昼に熱を放出することを考えます（図表3.10）。

図表3.10 時間別熱供給例（冬季平日）
最大需要に対して約140kWの熱供給能力が必要なところ、夜間の貯湯により、木質バイオマスボイラーの能力は80kWで済んでいます。夜間の貯湯熱量が累積で380kWh程度必要ですので、例えば43℃の利用温度に対して85℃で貯湯すると、温度差×水の熱容量より、貯湯槽の必要容量は7.8t以上と計算されます。

図表3.11 時間別熱供給例（冬季休日）

次に、約1.5倍の熱需要となる休日への対応例です。
平日で計算した木質バイオマスボイラー容量と貯湯量で供給していくと16時台に熱供給が足りなくなるため、そこから23時台までを化石燃料のボイラーで補っていく計画としています。休日のみですので、化石燃料の消費は全体の量としてはさほど大きくはありません。

以上のように、貯湯槽及び化石燃料ボイラーとの組合せにて、木質バイオマスボイラーの稼働率を高めることができます。（モデル例ではありますが、この例では冬100%、夏75%）
第3章 熱需要の把握

第3章 熱需要の把握

熱需要は一般に計測されていないことがほとんどため、把握することは容易ではありません。限られた手がかりから如何に実像に迫るかは、色々な工夫を要します。

（1）石油・ガス・電気のデータを用いる

新築建物などでの新たな熱需要であれば、従来から設備計画の中で熱負荷計算は行われていますので、設計士からのデータを活用できます。

ただし、実際には既存建物の化石燃料消費を木質の熱で置換えるケースが多く、その場合、新築時の熱負荷計算はされていなかったり、資料が残っていないケースがほとんどです。このため、熱需要の把握は、現状のエネルギー消費量、即ち石油・ガス・電気のデータをスタートとして用います。

石油・ガス・電気の金額は、ほぼどこでも月単位にて把握されており、伝票を見れば数値を拾えます。熱対策を行う対象は一部の建物なのに対し、それら費用支払は事業所全体であるなど、利用解釈の難しいデータの場合もあります。できる限り区分けされ内訳のあるデータを使います。

（2）実測する

状況が許される限りは、熱需要、即ち既存熱源の負荷の実測を行うのが良いです。すべての季節にわたり実測することは困難ですが、少なくとも平日と休日などサンプル日のデータを探ることは時間帯別の熱需要の内訳・パターンを知る大きな手がかりになります。

計測方法の例としては、管の外に取り付ける非破壊型の流量計と、往きと還り管の断熱被覆の下に潜らせる熱電対をセットし、データロガーで記録します。ある程度の器材投資はかかりますが、設計や経済計算の信用度が上がりますので、有益と言えます。

（3）内訳を推測する

熱需要データは不完全なので、それを補完し、熱需要の特性を理解して設計への応用を考えるために、理論的な分解と解釈をします。例えば月々の消費量をグラフ化すると、季節変動から熱の使途や内訳が推計できるようになっています。中間期と呼ばれる春や秋の暖房の始まる前の月を基準にして、11月〜3月に消費量が増える分との差を出せば、その分はおおよそ暖房の熱需要と推測できます。

また、新築で行われる熱負荷計算を応用して、対象建物の仕様を置いて計算してみることとも、内訳の推計につながります。例えば事務所の暖房であれば、窓・壁等から熱の漏れる負荷、換気で熱が漏れる負荷、人や機械による発熱分、が内訳です。それら理論的分析をしながらも、実データを参照しながら現実性を確認します。
（4）温度帯を整理する

浴槽とタンクに貯める給湯や産業用途では、それぞれに必要とする温度帯が違います。資料やヒアリングで把握できることが大半です。必要とされる温度に対してある程度の温度差をもって供給することは物理的に必要ですが、その余裕度を大きくすぎないように設定すると、ボイラーの熱効率が上がり省エネになります。また、排熱を有効利用できることは意外に多いもので、場合によってはかなりの省エネになります（例えば、蒸気を利用したあと捨てていたドレンの熱回収をし補給水の予熱に充てると10%の省エネになるなど）。それらの機会は温度帯の整理から生まれます。

（5）ヒアリングで補完する

限定的な実在データを補完するのが、ヒアリングで題材集めをします。ユーザーの熱の使い方を多面的に聞き取ります。その1つは営業時間や運転時間、利用人数、休日、稼働率等の施設の営業に関わる情報です。もう1つは必要温度や給水温度、外気温度等の運転設定条件などです。これに、例えば風呂であれば夜間ふたやカバーをしているかなどの現地確認を組み合わせ、省エネルギーの可能性を総合的に把握します。

Ⅳ．まとめ

化石燃料ボイラーと木質バイオマスボイラーでは、技術面と経済面が大きく違うため、木質バイオマスボイラーを有効に設計するには、熱需要の内訳の把握分析が大事です。ユーザーがそれら論点について把握していれば、過剰設備や不適切な設備を売り込まれることへの防衛になります。熱需要から設計を行っていくと、運転方法から経済計算まで、専門家でないユーザーでも、なぜそうするのか意味が分かるようになります。

また、貴重な木質資源を燃やす前に、省エネをして消費を減らすのが先です。熱需要をいくつかの面から見える化すると、「もったいない」ところがあぶり出され、省エネ・低コストで持続可能な木質利用の第一歩にできます。
第4章 燃料の特徴と品質

木質バイオマス燃料は、薪やチップ、ペレットなど種類も多く、さらには同一の種類でも、形状や水分が様々で、品質ばらつきがあるのが大きな特徴です。このため、木質バイオマスは、種類、品質によって使われるボイラーなどの燃料機器も異なってきます。

この点、木質バイオマスは、品質が一定でボイラーの選定が容易な、都市ガスや灯油、重油などの化石燃料の延長で考えることはできません。ボイラーや燃料供給装置に適合しない形状や水分の燃料を投入すると、定格出力が出ない、鎮火してしまう、燃料供給装置が詰るなど、化石燃料にはなかったトラブルが起きやすくなります。

もっとも、最近ではイノベーションも進み、自動燃焼など、バイオマスボイラーの利便性も大幅に高まってきています。したがって、これらの特性をよく理解したうえで、燃料とボイラーの組み合わせを決め、適切に運営していけば、木質バイオマス導入のメリットを十分に引き出すことができます。

本章では、木質バイオマス燃料の種類を整理したうえで、品質確保で最も重要な水分について解説し、次いで木質バイオマスの一般的な利用形態である、薪、チップ、ペレットの種類別について解説します。

Ⅰ. 木質バイオマス燃料の種類と品質

（1）燃料の種類

燃料は森林から直接産出する燃料と、木材加工から生じる端材・木屑、あるいは産業廃棄物由来の燃料に大きく二分されます。

森林から直接産出する燃料は、木材生産に伴う林地残材といった副産物利用が中心となります。

他方、木材加工過程から産出する燃料は、無垢材の製材端材を加工した燃料、集成材の表面加工に伴う接着剤などが付着した燃料、あるいは土木や建築廃材を原料とした燃料があります。なお、製材などの加工過程や産業廃棄物由来の燃料は、既存の取引が行われていることが多く、量的な確保は困難な場合があります。

以下に、主な木質燃料の種類と特性を整理します。
図表4.1 主な木質燃料の特性

<table>
<thead>
<tr>
<th>種類</th>
<th>特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>薪</td>
<td>・大割り、丸薪、小割り、粗突、柴などがある 木の幹、枝、梢、根を切って割ります。また小木・枝・柴を束ねて使用する 木質燃料の中では容易に加工でき、自家生産も可能 ストーブやボイラーの燃料として利用されている 燃料として質を左右するものは水分、樹種、サイズ ボイラーヘへの投入は効率的になる</td>
</tr>
<tr>
<td>チップ</td>
<td>・切削チップ、スクリュー切削チップ、破砕チップがある 木材を細かくする機械を使ってチップにする ペレットより安価なため、小規模な温水ボイラーから大規模な発電施設の燃料として利用されている ボイラーシステムの違いで、適合するチップの形状・水分が変わる ボイラーや自動投入、自動運転が可能</td>
</tr>
<tr>
<td>木質ペレット</td>
<td>・ホワイト・ペレットなどがある 製材などの加工過程で発生するおが粉やかんな屑、あるいは製材端材を粉砕して乾燥させた原料を圧縮成型してペレットにする ストーブやボイラーの燃料として利用されている 燃料密度が高いため、保管施設が小さく 大きさは均一で、木質燃料の中で最も扱いやすい 生産工程が複雑なため、薪、チップと比べて高価 ボイラーや自動投入、自動運転が可能</td>
</tr>
<tr>
<td>おが粉</td>
<td>・おが粉、かんな屑がある 製材などの加工過程で発生する副産物および残余物 製材工場の乾燥用ボイラーなど専用の比較的大きなボイラーに利用されている ペレットの原料になり、家庭用ストーブの燃料としても利用される。 また、ブリケットの原料にもなる 通常は幹から発生する材なので土砂の混入は少ない 畜産の飲料の代替品として引き合いがある</td>
</tr>
<tr>
<td>樹皮（バーク）</td>
<td>・樹皮（バーク） 製材所の加工過程で発生する樹木の表皮で、副産物および残余物 水分が55～60％（w.b.）と高いため、特別な燃焼炉や火力発電の混焼燃料として利用される</td>
</tr>
<tr>
<td>廃材</td>
<td>・製材や土木・建設過程で発生する端材、建築物の解体時などに発生する 直接燃料とする場合と、チップ、ペレットの原料になる 熱供給や発電ボイラーの燃料として利用されている 水分は少なく10～15％（w.b.）程度 ベンキ、接着剤、防腐剤、ゴム、プラスチックなどの残余物が付着していることが多く、ボイラーやの影響があり、燃焼灰を産業廃棄物として処理する必要がある なお、大量の薬剤処理がされている木材（枕木・電柱・塩ビニル加工など）は使用できない</td>
</tr>
</tbody>
</table>
（2）水分と熱量の関係

木質燃料の発熱量は、図表4.2に示すとおり水分が高いほど低くなります。これは、燃料中に含まれる木質部分が少ないことがほとんど理由ですが、加えて燃料中の水分を蒸発させるのも熱が使われるためです。このため、同じ重さの燃料を燃焼させた場合、燃料に含まれる水分で得られる熱量に差が出ます。

ボイラーの定格出力は、それぞれ指定されている水分の燃料を用いた場合の出力表示です。このため、指定された水分の燃料を用いれば、燃料消費も最適化され、安定出力が維持されると同時に、ボイラーへの負担も小さく、維持管理が容易になります。

他方で、指定された水分よりも高い場合、表示されている定格出力が得られず、出力を維持するためには燃料を余計に消費することになります。不完全燃焼による乾留ガス、有害物質および臭気の発生や、鎮火することもあります。このような場合、ボイラーに負担がかかるトラブルを発生したり、排気部分の維持管理コストが増大することもあります。

また、指定された水分よりも低い場合、発熱量が大きすぎて熱を捨てることになりかねません。燃焼が早すぎて、燃料消費量も増えてしまいます。さらに、炉内が高温になりすぎると、耐火レンガの劣化が進む原因になります。

このように木質燃料の水分管理は、木質バイオマス利用の最も重要なポイントといえます。

図表4.2 水分および含水率と発熱量の関係

（出所）Wood Fuels Handbook, Biomass Trade Center, 2009
（３）燃料に含まれる水分の基準
本テキストでは、木質燃料に含まれる水分の比率を「水分」と表していますが、これは、木材業界で一般に使われる「含水率」とどう異なるのでしょうか。
日本工業規格（JIS）に含水率として規定されている計算方法が「乾量基準」に当たります。「乾量基準」とは、完全に乾燥させた木材の重量に対する水の割合を正確に表すことを目的にした計測法で、用材利用や研究分野の基準に使われています。
一方、「湿量基準」とは、水分を含んでいる状態の木材（生木）の重量に対する水の割合を表しています。たとえば、水分35%とは、燃料となる部分が65%、水分が35%という意味です。「湿量基準」の方がバイオマス計測方法として適切で、国際的に定着しています。本テキストでも水分の比率は、湿量基準を表す「水分」を用います。

図表 4.3 湿量基準と乾量基準の基本的な考え方

<table>
<thead>
<tr>
<th>単位</th>
<th>湿量基準</th>
<th>乾量基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>濁量基準</td>
<td>湿分% (w.b.)</td>
<td>含水率% (d.b.)</td>
</tr>
<tr>
<td>湿分% (w.b.)</td>
<td>[\frac{\text{乾燥前重量} \times 	ext{湿分}}{\text{乾燥前重量} - \text{全乾重量}}]</td>
<td>[\frac{\text{乾燥前重量} \times \text{含水率}}{\text{全乾重量}}]</td>
</tr>
</tbody>
</table>

図表 4.4 湿量基準と乾量基準の関係

<table>
<thead>
<tr>
<th>湿量基準（水分% (w.b.)）</th>
<th>0</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>乾量基準（含水率% (d.b.)）</td>
<td>0</td>
<td>25</td>
<td>33</td>
<td>43</td>
<td>54</td>
<td>67</td>
<td>82</td>
<td>100</td>
<td>122</td>
<td>150</td>
</tr>
</tbody>
</table>

*伐採直後の立木は、湿量基準（水分55〜60% (w.b.)）
*欧州の木質燃料の基準値は、湿量基準（水分35% (w.b.)）

図表 4.5 水分の典型的な数値

生木の薪	40〜50% (w.b.)	生チップ	20〜50% (w.b.)	製材所の残端材	25〜60% (w.b.)
割った薪を屋根下で1年乾燥	30〜35% (w.b.)	屋根下で保管されたチップ	20〜30% (w.b.)	建設業の残端材	13〜20% (w.b.)
割った薪を屋根下で2年乾燥	20〜25% (w.b.)	空気乾燥されたチップ	15〜20% (w.b.)	木工所の残端材	7〜17% (w.b.)

（出所）「木のエネルギーハンドブック」岩手・木質バイオマス研究会より作成

日本工業規格 JIS Z2101（木材の試験方法）
（4）水分の計測と確認

安定した燃焼のためには、ボイラー規格に合致した水分の燃料が必要です。このため、木質燃料の水分管理を適宜行う必要があります。一般的には、燃料供給時は販売者や生産者が確認を行い、燃料購入者は定期的にサンプリング試験を行って確認します。水分の確認方法は、図表4.6のとおりです。

<table>
<thead>
<tr>
<th>確認方法</th>
<th>測定時期</th>
<th>測定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>計測器</td>
<td>納品時</td>
<td>・水分計や含水率計と呼ばれる計器を使用
・電気抵抗やマイクロ波等を用いた計器などを使用
・迅速に計測結果を確認できるが、計測値は近似値で誤差を含むことに注意が必要</td>
</tr>
<tr>
<td>簡便法</td>
<td></td>
<td>・事前に計測容器（バケツ）当たりの水分を測定して数値の一覧表を作成して、容器の重量測定値で水分を推定
・測定値は、近似値で誤差を含むことに注意が必要</td>
</tr>
<tr>
<td>室内試験（全乾法）</td>
<td>一定量取引ごとに実施</td>
<td>・専門の乾燥器を用いて一定量の試料（サンプリング）の絶乾質量と乾燥前の質量から、正確な水分を計測
・測定時間は1〜2日程度必要</td>
</tr>
</tbody>
</table>

（5）木質燃料の単位

木質燃料の取り扱い単位には、重量や材積、層積などいくつかの表し方がありますが、本テキストでは薪を除き、重量（円/t）で表します。

その理由は、発熱量が燃料の価値を決める要素の1つであることから、同じ水分の場合、樹種の違いによる重量当たりの発熱量の差が小さく、樹種の違いを考慮せずに発熱量（価値）を取り扱うことができるためです。なお、欧州の木質燃料の水分の基準値は35%（w.b.）となっており、この水分のときの単位重量（t）当りの発熱量は図表4.7に示すとおりです。

<table>
<thead>
<tr>
<th>水分</th>
<th>区分</th>
<th>高位発熱量 HHV</th>
<th>低位発熱量 LHV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mcal/t</td>
<td>GJ/t</td>
</tr>
<tr>
<td>35%</td>
<td>針葉樹</td>
<td>木部</td>
<td>3.210</td>
</tr>
<tr>
<td></td>
<td>樹皮</td>
<td>3.180</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td>広葉樹</td>
<td>木部</td>
<td>3.060</td>
</tr>
<tr>
<td></td>
<td>樹皮</td>
<td>3.040</td>
<td>12.8</td>
</tr>
</tbody>
</table>

(出所)「木質バイオマスボイラー導入指針」株式会社森のエネルギー研究所より作成
Ⅱ．薪

薪は、加工が容易で、加工コストも相対的に低めです。他方、チップやペレットと異なり、薪をつくるために木を伐採利用する主産物利用が主体になります。したがって、伐採コストをどう下げるのかが、大きなポイントになります。

薪は自家生産が可能ですが、ボイラーへの投入は人力となります。そのため、比較的小規模の熱需要で薪が自給自足できる地域に適しています。

薪の品質を左右するのは水分、樹種、サイズです。また、ボイラーごとに使用可能な水分、投入できる長さが決まっています。

(1) 薪とボイラーの適性

ボイラーごとに燃焼室の大きさが異なるため、ボイラーの仕様に適合した長さ、断面の薪を確保しなければなりません。

薪の水分の基本は、20% (w.b.) 以下です。燃焼させる数日前には野外からボイラー室に移して後乾燥させてからボイラーに投入します。なお、ボイラーによっては高い水分の薪を燃焼できる機種もありますので、ボイラー仕様に適合した薪を使用します。

薪はボイラーへの投入まで人力による小運搬が必要です。このため、保管場所はボイラー室から近くて運びやすい場所にすることが必要です。

(2) 薪を購入する場合の確認事項

薪の原料には、森林からの材以外に建築廃材が使われている場合があります。化学的な処理（塗料、接着剤、防腐剤など）が施されている場合は、燃焼灰を産業廃棄物として取り扱う必要があります。また、土石の混入は炉内の損傷の原因になるため、これらの材や土石が混入していないか確認が必要です。

薪を購入する場合、水分と樹種について確認する必要があります。ボイラーに適合する水分があり、樹種によって比重が異なり体積当たりの発熱量が違ってくるためです。
（3）薪の単位

薪の取り扱い単位は、薪m\(^3\)【層積】で表します。薪m\(^3\)は、薪を極力空隙の無いように積んだ材積です。なお、薪をカゴなど一定の容積に空隙を含む状態で投入（バルク積・ばら積）した場合は、バルク材積と言います。

薪を層積単位で取り扱う理由は、国内および欧米でも一般的な薪の取引単位とされているためです。

| コ ラ ム 【薪の材積と層積の換算】 |
|-----------------|-----------------|-----------------|
| 1 m\(^3\)に積上げ大割りした薪 | 0.7 m\(^3\)（隙間を含まないかたまり） |
| 1 m\(^3\)の木（隙間を含まないかたまり） | 1.4 m\(^3\)（積上げた大割りした薪） |
| 1 m\(^3\)角に積まれた乾燥した大割りの針葉樹の薪 | 400 kg |
| 1 m\(^3\)角に積まれた乾燥した大割りのブナの薪 | 540 kg |

（大割りした薪：長さ1.0mに切り割ったもの）

<table>
<thead>
<tr>
<th>丸太</th>
<th>1m(^3)の薪</th>
<th>切断薪</th>
</tr>
</thead>
<tbody>
<tr>
<td>m(^3)</td>
<td>薪m(^3)（積）</td>
<td>バルク</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

（出所）「森林組合No506（木質バイオマス用語と単位，小島健一郎）」より
Ⅲ. チップ

チップは林地残材が利用しやすく、生産・運搬も比較的容易です。また、燃料供給・燃焼の自動化が進んでおり、大量利用に対応できることなどから、今後、最も利用が増えると見込まれるバイオマス燃料です。

他方、チップ燃料の取り扱いには、他の木質燃料以上に、形状や水分などに注意することが必要です。特に、形状・水分と、ポイラーの適合性が重要で、この組み合わせを誤ると、出力不足やトラブルの原因になります。また、不純物が混入すると不具合につながりますので、品質管理を適切に行うことが必要です。

以下に、チップの形状や水分、不純物の混入について解説します。

<table>
<thead>
<tr>
<th>図表 4.8 チップの品質とポイラーの不具合に関する問題</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

（1）チップの形状と燃料供給システムの適性

国内で燃料として使われているチップは、図表 4.9 に示すとおり、切断チップと、破砕チップがあります。これら 2 タイプのチップは流動性が大きく異なるため、それぞれに適した燃料供給システムを選択しなければなりません。

特に気を付けなければならないのは破砕チップです。破砕チップはもともと廃棄物処理用であり燃料用ではありません。破砕チップは流動性が悪く、長尺物のチップが混入して、サイロ内でブリッジを形成したり、搬送装置内が詰まるなどの不具合が多く発生しています。

スクリューコンベアには、長尺物が混じらない切断チップを使用することが必要です。

写真 4.1 スクリューコンベア

－写真 4.1 スクリューコンベアの例－

(出所)「ETA社カタログ」より

7 燃料細片の絡み合いや圧力により、供給装置に燃料が付着する等して燃料が供給出来なくなる状態
8 らせん状の羽を回転させることで軸方向に物質を送り出す搬送装置
第4章 燃料の特徴と品質

図表 4.9 チップのタイプと燃料供給方法の適性

<table>
<thead>
<tr>
<th>形態</th>
<th>切削チップ（チッパーによる）</th>
<th>破砕チップ（破砕機による）</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造方法</td>
<td>・木材をカッターで削り取る方法で作成される
・品質が均等で流動性が良い
・生産速度が速くなるほど品質が不均で流動性が悪くなる傾向があるため注意が必要</td>
<td>・ハンマーミル方式（ハンマーの打撃衝撃で破砕）とカッターミル方式（受刃と切断刃によるせん断力で破砕）によって製造される
・長尺物の発生など、品質が不均質で流動性が悪い</td>
</tr>
<tr>
<td>ボイラーや燃料供給方法等</td>
<td>・スクリューコンベア式
・燃料供給装置でブリッジが形成しにくく、燃料供給トラブルの可能性が比較的低い</td>
<td>・ブッシャー式、チェーン・ベルトコンベア式
・燃料サイロでブリッジを起こしやすい
・スクリュー搬送装置でチップが詰まりやすい</td>
</tr>
</tbody>
</table>

（2）チップの水分とボイラーの適性

木質燃料は図表 4.2に示すとおり、水分の違いにより燃焼時の発熱量が異なります。また、ボイラーには機種毎に使用する燃料の水分が指定されています。

ボイラーの燃焼方式には、水分が45%（w.b.）以上でも燃焼可能な移動床式ボイラーがありますが、出力規模が100kW以上で価格もその分割高になります。また、安定した出力を維持するためには連続運転が前提です。なお、移動床式ボイラーの場合には水分の高い燃料を使用するため、着火は手動となります。

乾燥したチップしか燃焼できない固定床式ボイラーに水分の高いチップを投入した場合、必要とする熱量が得られないばかりか、鎮火してしまう場合があります。

また、寒冷地では水分の高い燃料がサイロ内で凍結してチップが供給されないといった問題も発生しています。この場合、本来なら、ボイラーの廃熱を利用してサイロのチップの乾燥に使うような設計にすべきです。

このように、チップの品質によってボイラー形式が異なります。利用するチップの品質を決めてからボイラー機種を決定し、適切な設計をすること、ならびにチップの品質管理を適切に行うことが必要です。
図表4.10 チップボイラーの燃焼方式と水分の適応範囲

<table>
<thead>
<tr>
<th>チップボイラーの燃焼方式</th>
<th>移動床式</th>
<th>固定床式</th>
</tr>
</thead>
<tbody>
<tr>
<td>特徴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| チップが火床を移動燃焼するので下部では乾燥した燃料が燃焼する
 - 出力100kW以上
 - 価格が割高
 - 連続運転が前提（手動着火） | チップが移動するなど、炉内で乾燥するシステムではない
 - 出力15kWから
 - 移動床式に比べて小型で価格が安い
 - 自動着火 |
| 対応する水分 | 低〜高
 生チップ適応可能（45%（w.b.）以上） | 低
 乾燥チップの使用が原則（45%（w.b.）以下） |

（出所）スイス 木質バイオマス専門家アンドレアス・ケール氏資料より作成

（3）不純物の混入による不具合

チップ原料には林地残材の他に、製材端材や産業廃棄物の建設端材、並びに建築物の解体材などが原料になっているため、土石や砂利、釘やクサビ、プラスチックや塩化ビニールなどの異物が混入している場合があります。

異物の混入は、チッパーを損傷させるとともに、ボイラーの燃料供給システムに大きな損傷を与えかねません。また、土に含まれるガラス成分は、燃焼時に溶けて炉内の損傷の原因にもなります。

チップ原料が廃棄物由来で化学的な処理（塗料、接着剤、防腐剤など）が施されている場合は、燃焼灰を産業廃棄物として取り扱う必要があります。このため、燃料供給者に対して、事前に原料の由来や原料の追跡確認の可否についても確認しておくことが必要です。

写真4.2 原料に混入する土・グリ石・砕石・金物など
第4章 燃料の特徴と品質

コラム 【欧州のチップ品質規格と国内の燃料用チップ規格】

欧州ではチップの大きさ、含水率、窒素含有量、針葉樹の含有率、灰含有率、生産工程などから分類が行われ、燃料チップの品質基準が整備されています。欧州のチップのサイズ（大きさ）は、主要物の割合、細粒・長尺物の許容限度等で示されています。従って、品質が定められることで、ボイラーや燃料供給システムの最適な運転につながることになります。

参考 欧州規格EN14961非産業用の木質チップの粒度

<table>
<thead>
<tr>
<th>粒度（P）</th>
<th>最小限75%のチップの割合</th>
<th>微粉の割合</th>
<th>粗い粒子（重量%）、粒の最大長（mm）、横断面の最大面積（cm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>P16A</td>
<td>3.15≦P≦16mm</td>
<td>≤12%</td>
<td>16mm超は3%以下、全てが31.5mm未満、オーバーサイズの横断面積は1cm²未満</td>
</tr>
<tr>
<td>P16B</td>
<td>3.15≦P≦6mm</td>
<td>≤12%</td>
<td>45mm超は3%以下、全てが120mm未満、オーバーサイズの横断面積は1cm²未満</td>
</tr>
<tr>
<td>P31.5</td>
<td>8≦P≦31.5m</td>
<td>≤8%</td>
<td>45mm超は6%以下、全てが120mm未満、オーバーサイズの横断面積は2cm²未満</td>
</tr>
<tr>
<td>P45</td>
<td>8≦P≦45m</td>
<td>≤8%</td>
<td>63mm超は6%以下で100mm超は最大3.5%迄、全てが120mm未満、オーバーサイズの横断面積は5cm²未満</td>
</tr>
</tbody>
</table>

（出所）「森林組合No.511」より

現在国内では業界団体などからチップの規格・ガイドライン案が公表されていますが、燃料に特化した規格は現在検討中です。現状では、水分の問題を含めて、ボイラー導入者とチップ供給業者が試行錯誤のうえ、ボイラーや燃料供給システムのマッチングをはかっている状況です。このような状況からも、国内では燃料としての品質項目の試験表示の義務化により、チップの需要・供給サイドへの浸透が求められています。

参考 日本における木質チップ燃料の自主規格（案）

<table>
<thead>
<tr>
<th>表記</th>
<th>閾値</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒度（P）</td>
<td>P 16</td>
<td>3.15≦P≦16mm</td>
</tr>
<tr>
<td></td>
<td>P 31.5</td>
<td>8≦P≦31.5mm</td>
</tr>
<tr>
<td></td>
<td>P 45</td>
<td>8≦P≦45mm</td>
</tr>
<tr>
<td>水分（M）</td>
<td>M 10</td>
<td>≤10</td>
</tr>
<tr>
<td></td>
<td>M 25</td>
<td>≤25</td>
</tr>
<tr>
<td></td>
<td>M 35</td>
<td>≤35</td>
</tr>
<tr>
<td></td>
<td>M 45</td>
<td>≤5</td>
</tr>
<tr>
<td>灰分（A）</td>
<td>A 1.0</td>
<td>≤1.0</td>
</tr>
<tr>
<td></td>
<td>A 1.5</td>
<td>≤1.5</td>
</tr>
<tr>
<td></td>
<td>A 3.0</td>
<td>≤3.0</td>
</tr>
<tr>
<td></td>
<td>A 5.0</td>
<td>≤5.0</td>
</tr>
</tbody>
</table>

（出所）「森林組合No.511」ペレットクラブ小島氏作成資料より粒度、水分、灰分部分を抜粋。
Ⅳ. 木質ペレット

ペレットは、薪、チップに比べ均質で取り扱いが容易なため、家庭用のストーブから事業者向けのボイラーまで様々な場面で利用されています。接着剤などの添加物を使わず圧力と熱により固形化して製造されているため、化学的な処理を受けていない森林からの材を原料にしている場合は100%自然由来の燃料といえますが、建築廃材などを原料にしているペレットも流通しているため注意が必要です。

（1）ペレットの品質規格

ペレットは世界的にも規格化が最も進んだバイオ燃料です。この分野で先進的な欧州におけるペレットの規格化は、SIS（スウェーデン）やÖNORM（オーストリア）、DIN（ドイツ）などの国家規格を経てEN（欧州規格）として2010年に体系化されました。現在、より上位のISOにおいてペレット規格のドラフトが提示されておりますが、内容はENと同じなため、EN規格が実質的な国際規格といえるでしょう。

<table>
<thead>
<tr>
<th>項 目</th>
<th>單 位</th>
<th>A1</th>
<th>A2</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>直径（D）</td>
<td>mm</td>
<td>6（±1）もしくは8（±1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>長さ（L）</td>
<td>mm</td>
<td>3.15 ≤ L ≤ 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>かさ密度（BD）</td>
<td>kg/m3</td>
<td>≥600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>真発熱量（Q）</td>
<td>MJ/kg</td>
<td>16.5 ≤ Q ≤ 19</td>
<td>16.3 ≤ Q ≤ 19</td>
<td>16.0 ≤ Q ≤ 19</td>
</tr>
<tr>
<td>水分（M）</td>
<td>w-%</td>
<td>≤ 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>微粉率（F）(＜3.15mm)</td>
<td>w-%</td>
<td>≤ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>機械的耐久力（DU）</td>
<td>w-%</td>
<td>≥97.5</td>
<td>≥96.5</td>
<td></td>
</tr>
<tr>
<td>灰分（A）</td>
<td>w-%</td>
<td>≤ 0.7</td>
<td>≤ 1.5</td>
<td>≤ 3.0</td>
</tr>
<tr>
<td>灰融点 ℃</td>
<td></td>
<td>≥1200</td>
<td>≥1100</td>
<td></td>
</tr>
<tr>
<td>塩素（Cl）</td>
<td>w-%</td>
<td>≤0.02</td>
<td>≤0.03</td>
<td></td>
</tr>
<tr>
<td>硫黄（S）</td>
<td>w-%</td>
<td>≤0.03</td>
<td>≤0.04</td>
<td></td>
</tr>
<tr>
<td>酸素（N）</td>
<td>w-%</td>
<td>≤0.3</td>
<td>≤0.5</td>
<td>≤1.0</td>
</tr>
<tr>
<td>銅（Cu）</td>
<td>mg/kg</td>
<td>≤10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロム（Cr）</td>
<td>mg/kg</td>
<td>≤10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ピス（As）</td>
<td>mg/kg</td>
<td>≤1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カドミウム（Cd）</td>
<td>mg/kg</td>
<td>≤0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水銀（Hg）</td>
<td>mg/kg</td>
<td>≤0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>鉛（Pb）</td>
<td>mg/kg</td>
<td>≤10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ニッケル（Ni）</td>
<td>mg/kg</td>
<td>≤10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>亜鉛（Zn）</td>
<td>mg/kg</td>
<td>≤100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第4章 燃料の特徴と品質

日本における規格化は、ペレットクラブが2005年に自主規格を発表、2011にはENとほぼ同じ内容に改定しています。それとは別に、(一社)日本木質ペレット協会も2011年に自主規格を制定しており、こちらは独自の計測法と閾値を設定しています。現状、国内には２つの規格が並存しているため、両規格の統合に関する協議を行っています。

ペレットは、形状や水分が一定しているため、灰分が評価ポイントとなります。これは樹皮の混入度合いや樹種で決まります。A1クラスはホワイト・ペレットで、ストーブや小型のボイラーに最適です。原料は剥皮した針葉樹、つまりおが粉やかんな屑など製材の副産物で、欧州では家庭用ペレットといえばホワイト・ペレットを指します。日本で生産が多い全木ペレット（丸太のすべてを原料に利用）はA2もしくはBに分類されますが、Bに属するペレットはボイラー利用が望ましいでしょう。

（2）認証システム

規格通りに燃料が製造されているか、また決められたとおりに流通しているかを担保するため、ペレット燃料に対する第三者認証が始まっています。先行する欧州ではEN規格に対してEPC（欧州ペレット協議会）が「ENプラス」という認証システムを運用しています。日本ではペレットクラブとペレット協会が別々に認証を行っています。

写真４３ ペレットクラブ（左）と日本木質ペレット協会（右）の認証ラベル